A Tale of Two Exams

Agarwal, P. K., & Bain, P. M. (2019). Powerful teaching: Unleash the science of learning. John Wiley & Sons.

Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa Fuentes, S., Trigueros, M., & Weller, K. (2014). APOS theory. A Framework for Research and Curriculum Development in Mathematics Education, 5–15.

Ashcraft, M. H., & Krause, J. A. (2007). Working memory, math performance, and math anxiety. Psychonomic Bulletin & Review, 14, 243–248.

Article  Google Scholar 

Biggs, J., & Tang, C. (2003). Teaching for quality learning at university. Buckingham. McGraw-hill education (UK).

Google Scholar 

Bloom, B. (1956). Taxonomy of Educational objectives: Cognitive and Affective Domains. New York: David Mckay Company Inc.

Google Scholar 

Maciejewski, W. (2021). Let your students cheat on exams. Primus, 31(6), 685–697.

Article  Google Scholar 

Maciejewski, W. (2022). Between confidence and procedural flexibility in calculus. International Journal of Mathematical Education in Science and Technology, 53(7), 1733–1750.

Google Scholar 

Maciejewski, W., & Merchant, S. (2016). Mathematical tasks, study approaches, and course grades inundergraduate mathematics: A year-by-year analysis. International Journal of Mathematical Education in Science and Technology, 47(3), 373–387.

Google Scholar 

Maciejewski, W., & Star, J. R. (2016). Developing flexible procedural knowledge in undergraduatecalculus. Research in Mathematics Education, 18(3), 299–316.

Maciejewski, W., Bragelman, J., Campisi, M., Hsu, T., Gottlieb, A., Schettler, J., ... & Cayco, B. (2021). Change comes from without: Lessons learned in a chaotic year. PRIMUS, 31(3-5), 504–516.

Article  Google Scholar 

Maciejewski, W., Bergthold, T., & Bragelman, J. (2024). Postsecondary general education mathematics: Theory and practice. International Journal of Mathematical Education in Science and Technology, 55(4), 922–945.

Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20(2), 110–122.

Article  Google Scholar 

Rittle-Johnson, B., Schneider, M., & Star, J. R. (2015). Not a one-way street: Bidirectional relations between procedural and conceptual knowledge of mathematics. Educational Psychology Review, 27, 587–597.

Article  Google Scholar 

Shetterly, M. L., & Conkling, W. (2018). Hidden figures. HarperCollins.

Google Scholar 

Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36(5), 404–411.

Google Scholar 

Stokke, A. (2023). https://www.cdhowe.org/intelligence-memos/anna-stokke-reversing-decline-canadian-math-scores

Sweller, J. (2006). The worked example effect and human cognition. Learning and instruction.

Tallman, M. A., Carlson, M. P., Bressoud, D. M., & Pearson, M. (2016). A characterization of calculus I final exams in US colleges and universities. International Journal of Research in Undergraduate Mathematics Education, 2, 105–133.

Article  Google Scholar 

Tao, T. [@tao.@mathstodon.xyz] (2023, June 24). As an experiment, I recently tried consulting #GPT4 on a question I found on #MathOverflow prior to obtaining a solution. [Mastodon toot]. Mastodon. https://mathstodon.xyz/@tao/110601051375142142

留言 (0)

沒有登入
gif