NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport

Harris JJ, Attwell D. The energetics of CNS white matter. J Neurosci. 2012;32:356–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yellen G. Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism. J Cell Biol. 2018;217:2235–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shokhirev MN, Johnson AA. An integrative machine-learning meta-analysis of high-throughput omics data identifies age-specific hallmarks of Alzheimer’s disease. Ageing Res Rev. 2022;81:101721.

Article  CAS  PubMed  Google Scholar 

Roy M, Rheault F, Croteau E, Castellano CA, Fortier M, St-Pierre V, Houde JC, Turcotte EE, Bocti C, Fulop T, et al. Fascicle- and Glucose-Specific Deterioration in White Matter Energy Supply in Alzheimer’s Disease. J Alzheimers Dis. 2020;76:863–81.

Article  CAS  PubMed  Google Scholar 

Wang M, Liu K, Pan J, Li J, Sun P, Zhang Y, Li L, Guo W, Xin Q, Zhao Z, et al. Brain-wide projection reconstruction of single functionally defined neurons. Nat Commun. 2022;13:1531.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winnubst J, Bas E, Ferreira TA, Wu Z, Economo MN, Edson P, Arthur BJ, Bruns C, Rokicki K, Schauder D, et al. Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain. Cell. 2019;179(268–281):e213.

Google Scholar 

Peng H, Xie P, Liu L, Kuang X, Wang Y, Qu L, Gong H, Jiang S, Li A, Ruan Z, et al. Morphological diversity of single neurons in molecularly defined cell types. Nature. 2021;598:174–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coleman MP. The challenges of axon survival: introduction to the special issue on axonal degeneration. Exp Neurol. 2013;246:1–5.

Article  CAS  PubMed  Google Scholar 

Zhang J, Long B, Li A, Sun Q, Tian J, Luo T, Ding Z, Gong H, Li X. Whole-Brain Three-Dimensional Profiling Reveals Brain Region Specific Axon Vulnerability in 5xFAD Mouse Model. Front Neuroanat. 2020;14:608177.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science. 2005;307:1282–8.

Article  CAS  PubMed  Google Scholar 

Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A, Khan J, Polak MA, Glass JD. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol. 2004;185:232–40.

Article  PubMed  Google Scholar 

Xiao AW, He J, Wang Q, Luo Y, Sun Y, Zhou YP, Guan Y, Lucassen PJ, Dai JP. The origin and development of plaques and phosphorylated tau are associated with axonopathy in Alzheimer’s disease. Neurosci Bull. 2011;27:287–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones DP, Sies H. The Redox Code. Antioxid Redox Signal. 2015;23:734–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berger F, Lau C, Dahlmann M, Ziegler M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem. 2005;280:36334–41.

Article  CAS  PubMed  Google Scholar 

Raffaelli N, Sorci L, Amici A, Emanuelli M, Mazzola F, Magni G. Identification of a novel human nicotinamide mononucleotide adenylyltransferase. Biochem Biophys Res Commun. 2002;297:835–40.

Article  CAS  PubMed  Google Scholar 

Yan T, Feng Y, Zheng J, Ge X, Zhang Y, Wu D, Zhao J, Zhai Q. Nmnat2 delays axon degeneration in superior cervical ganglia dependent on its NAD synthesis activity. Neurochem Int. 2010;56:101–6.

Article  CAS  PubMed  Google Scholar 

Coleman MP, Hoke A. Programmed axon degeneration: from mouse to mechanism to medicine. Nat Rev Neurosci. 2020;21:183–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerdts J, Summers DW, Milbrandt J, DiAntonio A. Axon Self-Destruction: New Links among SARM1, MAPKs, and NAD+ Metabolism. Neuron. 2016;89:449–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simon DJ, Watkins TA. Therapeutic opportunities and pitfalls in the treatment of axon degeneration. Curr Opin Neurol. 2018;31:693–701.

Article  CAS  PubMed  Google Scholar 

Gilley J, Coleman MP. Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLoS Biol. 2010;8:e1000300.

Article  PubMed  PubMed Central  Google Scholar 

Ali YO, Allen HM, Yu L, Li-Kroeger D, Bakhshizadehmahmoudi D, Hatcher A, McCabe C, Xu J, Bjorklund N, Taglialatela G, et al. NMNAT2:HSP90 Complex Mediates Proteostasis in Proteinopathies. PLoS Biol. 2016;14:e1002472.

Article  PubMed  PubMed Central  Google Scholar 

Bennett JP, Keeney PM. RNA-Sequencing Reveals Similarities and Differences in Gene Expression in Vulnerable Brain Tissues of Alzheimer’s and Parkinson’s Diseases. J Alzheimers Dis Rep. 2018;2:129–37.

Article  PubMed  PubMed Central  Google Scholar 

Ali YO, Li-Kroeger D, Bellen HJ, Zhai RG, Lu HC. NMNATs, evolutionarily conserved neuronal maintenance factors. Trends Neurosci. 2013;36:632–40.

Article  CAS  PubMed  Google Scholar 

Brazill JM, Li C, Zhu Y, Zhai RG. NMNAT: It’s an NAD(+) synthase... It’s a chaperone... It’s a neuroprotector. Curr Opin Genet Dev. 2017;44:156–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Milde S, Gilley J, Coleman MP. Subcellular localization determines the stability and axon protective capacity of axon survival factor Nmnat2. PLoS Biol. 2013;11:e1001539.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hung CO, Coleman MP. KIF1A mediates axonal transport of BACE1 and identification of independently moving cargoes in living SCG neurons. Traffic. 2016;17:1155–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guedes-Dias P, Holzbaur ELF: Axonal transport: Driving synaptic function. Science 2019, 366.

Sleigh JN, Rossor AM, Fellows AD, Tosolini AP, Schiavo G. Axonal transport and neurological disease. Nat Rev Neurol. 2019;15:691–703.

Article  PubMed  Google Scholar 

Pacelli C, Giguere N, Bourque MJ, Levesque M, Slack RS, Trudeau LE. Elevated Mitochondrial Bioenergetics and Axonal Arborization Size Are Key Contributors to the Vulnerability of Dopamine Neurons. Curr Biol. 2015;25:2349–60.

Article  CAS  PubMed  Google Scholar 

Gallo G. The bioenergetics of neuronal morphogenesis and regeneration: Frontiers beyond the mitochondrion. Dev Neurobiol. 2020;80:263–76.

Article  PubMed  PubMed Central  Google Scholar 

Chamberlain KA, Sheng ZH. Mechanisms for the maintenance and regulation of axonal energy supply. J Neurosci Res. 2019;97:897–913.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zala D, Hinckelmann MV, Yu H. Lyra da Cunha MM, Liot G, Cordelieres FP, Marco S, Saudou F: Vesicular glycolysis provides on-board energy for fast axonal transport. Cell. 2013;152:479–91.

Article  CAS  PubMed  Google Scholar 

Rangaraju V, Calloway N, Ryan TA. Activity-driven local ATP synthesis is required for synaptic function. Cell. 2014;156:825–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faitg J, Lacefield C, Davey T, White K, Laws R, Kosmidis S, Reeve AK, Kandel ER, Vincent AE, Picard M. 3D neuronal mitochondrial morphology in axons, dendrites, and somata of the aging mouse hippocampus. Cell Rep. 2021;36:109509.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santuy A, Turegano-Lopez M, Rodriguez JR, Alonso-Nanclares L, DeFelipe J, Merchan-Perez A. A Quantitative Study on the Distribution of Mitochondria in the Neuropil of the Juvenile Rat Somatosensory Cortex. Cereb Cortex. 2018;28:3673–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif