Lisio MA, Fu L, Goyeneche A, Gao ZH, Telleria C. High-grade serous ovarian cancer: basic sciences, clinical and therapeutic standpoints. Int J Mol Sci. 2019;20(4):952. https://doi.org/10.3390/ijms20040952.
Article CAS PubMed PubMed Central Google Scholar
Lele S. Ovarian cancer. Brisbane City: Exon Publications; 2022.
Guo X, Zhao G. Establishment and verification of logistic regression model for qualitative diagnosis of ovarian cancer based on MRI and ultrasound signs. Comput Math Methods Med. 2022;2022:7531371. https://doi.org/10.1155/2022/7531371.
Article PubMed PubMed Central Google Scholar
Staicu CE, Predescu DV, Rusu CM, Radu BM, Cretoiu D, Suciu N, Crețoiu SM, Voinea SC. Role of microRNAs as clinical cancer biomarkers for ovarian cancer: a short overview. Cells. 2020;9(1):169. https://doi.org/10.3390/cells9010169.
Article CAS PubMed PubMed Central Google Scholar
Stewart C, Ralyea C, Lockwood S. Ovarian cancer: an integrated review. Semin Oncol Nurs. 2019;35(2):151–6. https://doi.org/10.1016/j.soncn.2019.02.001.
Friedrich M, Friedrich D, Kraft C, Rogmans C. Multimodal treatment of primary advanced ovarian cancer. Anticancer Res. 2021;41(7):3253–60. https://doi.org/10.21873/anticanres.15111.
Article CAS PubMed Google Scholar
Engbersen MP, Van Driel W, Lambregts D, Lahaye M. The role of CT, PET-CT, and MRI in ovarian cancer. Br J Radiol. 2021;94(1125):20210117. https://doi.org/10.1259/bjr.20210117.
Article PubMed PubMed Central Google Scholar
Pan C, Liu H, Robins E, Song W, Liu D, Li Z, Zheng L. Next-generation immuno-oncology agents: current momentum shifts in cancer immunotherapy. J Hematol Oncol. 2020;13(1):29. https://doi.org/10.1186/s13045-020-00862-w.
Article PubMed PubMed Central Google Scholar
Morand S, Devanaboyina M, Staats H, Stanbery L, Nemunaitis J. Ovarian cancer immunotherapy and personalized medicine. Int J Mol Sci. 2021;22(12):6532. https://doi.org/10.3390/ijms22126532.
Article CAS PubMed PubMed Central Google Scholar
Odunsi K. Immunotherapy in ovarian cancer. Ann Oncol: Off J Eur Soc Med Oncol. 2017. https://doi.org/10.1093/annonc/mdx444.
Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17(8):807–21. https://doi.org/10.1038/s41423-020-0488-6.
Article CAS PubMed PubMed Central Google Scholar
Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205–14. https://doi.org/10.1016/j.cell.2015.03.030.
Article CAS PubMed PubMed Central Google Scholar
Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42. https://doi.org/10.1038/nri3405.
Article CAS PubMed PubMed Central Google Scholar
Granier C, De Guillebon E, Blanc C, Roussel H, Badoual C, Colin E, Saldmann A, Gey A, Oudard S, Tartour E. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open. 2017;2(2): e000213. https://doi.org/10.1136/esmoopen-2017-000213.
Article PubMed PubMed Central Google Scholar
Jaspers JE, Brentjens RJ. Development of CAR T cells designed to improve antitumor efficacy and safety. Pharmacol Ther. 2017;178:83–91. https://doi.org/10.1016/j.pharmthera.2017.03.012.
Article CAS PubMed PubMed Central Google Scholar
Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016;13(6):370–83. https://doi.org/10.1038/nrclinonc.2016.36.
Article CAS PubMed PubMed Central Google Scholar
Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, Badros AZ, Garfall A, Weiss B, Finklestein J, Kulikovskaya I, Sinha SK, Kronsberg S, Gupta M, Bond S, Melchiori L, Brewer JE, Bennett AD, Gerry AB, Pumphrey NJ, June CH. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015;21(8):914–21. https://doi.org/10.1038/nm.3910.
Article CAS PubMed PubMed Central Google Scholar
Siminiak N, Czepczyński R, Zaborowski MP, Iżycki D. Immunotherapy in ovarian cancer. Arch Immunol Ther Exp. 2022;70(1):19. https://doi.org/10.1007/s00005-022-00655-8.
Wang W, Liu JR, Zou W. Immunotherapy in ovarian cancer. Surg Oncol Clin N Am. 2019;28(3):447–64. https://doi.org/10.1016/j.soc.2019.02.002.
Article PubMed PubMed Central Google Scholar
Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci. 2016;107(10):1373–9. https://doi.org/10.1111/cas.13027.
Article CAS PubMed PubMed Central Google Scholar
Tian L, Xu B, Teng KY, Song M, Zhu Z, Chen Y, Wang J, Zhang J, Feng M, Kaur B, Rodriguez L, Caligiuri MA, Yu J. Targeting Fc receptor-mediated effects and the “don’t eat me” signal with an oncolytic virus expressing an anti-CD47 antibody to treat metastatic ovarian cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2022;28(1):201–14. https://doi.org/10.1158/1078-0432.CCR-21-1248.
Gebremeskel S, Nelson A, Walker B, Oliphant T, Lobert L, Mahoney D, Johnston B. Natural killer T cell immunotherapy combined with oncolytic vesicular stomatitis virus or reovirus treatments differentially increases survival in mouse models of ovarian and breast cancer metastasis. J Immunother Cancer. 2021;9(3): e002096. https://doi.org/10.1136/jitc-2020-002096.
Article PubMed PubMed Central Google Scholar
Hoare J, Campbell N, Carapuça E. Oncolytic virus immunotherapies in ovarian cancer: moving beyond adenoviruses. Porto Biomed J. 2018;3(1): e7. https://doi.org/10.1016/j.pbj.0000000000000007.
Article PubMed PubMed Central Google Scholar
Simpkins F, Flores A, Chu C, Berek JS, Lucci J 3rd, Murray S, Bauman J, Struemper H, Germaschewski F, Jonak Z, Gardner O, Toso J, Coukos G. Chemoimmunotherapy using pegylated liposomal doxorubicin and interleukin-18 in recurrent ovarian cancer: a phase I dose-escalation study. Cancer Immunol Res. 2013;1(3):168–78. https://doi.org/10.1158/2326-6066.CIR-13-0098.
Article CAS PubMed Google Scholar
Zhang X, He T, Li Y, Chen L, Liu H, Wu Y, Guo H. Dendritic cell vaccines in ovarian cancer. Front Immunol. 2021;11: 613773. https://doi.org/10.3389/fimmu.2020.613773.
Article CAS PubMed PubMed Central Google Scholar
Block MS, Dietz AB, Gustafson MP, Kalli KR, Erskine CL, Youssef B, Vijay GV, Allred JB, Pavelko KD, Strausbauch MA, Lin Y, Grudem ME, Jatoi A, Klampe CM, Wahner-Hendrickson AE, Weroha SJ, Glaser GE, Kumar A, Langstraat CL, Solseth ML, Cannon MJ. Th17-inducing autologous dendritic cell vaccination promotes antigen-specific cellular and humoral immunity in ovarian cancer patients. Nat Commun. 2020;11(1):5173. https://doi.org/10.1038/s41467-020-18962-z.
Article CAS PubMed PubMed Central Google Scholar
Vlad AM, Budiu RA, Lenzner DE, Wang Y, Thaller JA, Colonello K, Crowley-Nowick PA, Kelley JL, Price FV, Edwards RP. A phase II trial of intraperitoneal interleukin-2 in patients with platinum-resistant or platinum-refractory ovarian cancer. Cancer Immunol Immunother: CII. 2010;59(2):293–301. https://doi.org/10.1007/s00262-009-0750-3.
Article CAS PubMed Google Scholar
Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol. 2022;15(1):28. https://doi.org/10.1186/s13045-022-01247-x.
Article PubMed PubMed Central Google Scholar
Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: strategies for improving immunogenicity and efficacy. Pharmacol Ther. 2016;165:32–49. https://doi.org/10.1016/j.pharmthera.2016.05.004.
Article CAS PubMed Google Scholar
Bonati L, Tang L. Cytokine engineering for targeted cancer immunotherapy. Curr Opin Chem Biol. 2021;62:43–52. https://doi.org/10.1016/j.cbpa.2021.01.007.
Article CAS PubMed Google Scholar
Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976;193(4257):1007–8. https://doi.org/10.1126/science.181845.
Article CAS PubMed Google Scholar
March CJ, Mosley B, Larsen A, Cerretti DP, Braedt G, Price V, Gillis S, Henney CS, Kronheim SR, Grabstein K, et al. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature. 1985;315(6021):641–7. https://doi.org/10.1038/315641a0.
留言 (0)