Unlocking the ‘ova’-coming power: immunotherapy’s role in shaping the future of ovarian cancer treatment

Lisio MA, Fu L, Goyeneche A, Gao ZH, Telleria C. High-grade serous ovarian cancer: basic sciences, clinical and therapeutic standpoints. Int J Mol Sci. 2019;20(4):952. https://doi.org/10.3390/ijms20040952.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lele S. Ovarian cancer. Brisbane City: Exon Publications; 2022.

Book  Google Scholar 

Guo X, Zhao G. Establishment and verification of logistic regression model for qualitative diagnosis of ovarian cancer based on MRI and ultrasound signs. Comput Math Methods Med. 2022;2022:7531371. https://doi.org/10.1155/2022/7531371.

Article  PubMed  PubMed Central  Google Scholar 

Staicu CE, Predescu DV, Rusu CM, Radu BM, Cretoiu D, Suciu N, Crețoiu SM, Voinea SC. Role of microRNAs as clinical cancer biomarkers for ovarian cancer: a short overview. Cells. 2020;9(1):169. https://doi.org/10.3390/cells9010169.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stewart C, Ralyea C, Lockwood S. Ovarian cancer: an integrated review. Semin Oncol Nurs. 2019;35(2):151–6. https://doi.org/10.1016/j.soncn.2019.02.001.

Article  PubMed  Google Scholar 

Friedrich M, Friedrich D, Kraft C, Rogmans C. Multimodal treatment of primary advanced ovarian cancer. Anticancer Res. 2021;41(7):3253–60. https://doi.org/10.21873/anticanres.15111.

Article  CAS  PubMed  Google Scholar 

Engbersen MP, Van Driel W, Lambregts D, Lahaye M. The role of CT, PET-CT, and MRI in ovarian cancer. Br J Radiol. 2021;94(1125):20210117. https://doi.org/10.1259/bjr.20210117.

Article  PubMed  PubMed Central  Google Scholar 

Pan C, Liu H, Robins E, Song W, Liu D, Li Z, Zheng L. Next-generation immuno-oncology agents: current momentum shifts in cancer immunotherapy. J Hematol Oncol. 2020;13(1):29. https://doi.org/10.1186/s13045-020-00862-w.

Article  PubMed  PubMed Central  Google Scholar 

Morand S, Devanaboyina M, Staats H, Stanbery L, Nemunaitis J. Ovarian cancer immunotherapy and personalized medicine. Int J Mol Sci. 2021;22(12):6532. https://doi.org/10.3390/ijms22126532.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Odunsi K. Immunotherapy in ovarian cancer. Ann Oncol: Off J Eur Soc Med Oncol. 2017. https://doi.org/10.1093/annonc/mdx444.

Article  Google Scholar 

Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17(8):807–21. https://doi.org/10.1038/s41423-020-0488-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205–14. https://doi.org/10.1016/j.cell.2015.03.030.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42. https://doi.org/10.1038/nri3405.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Granier C, De Guillebon E, Blanc C, Roussel H, Badoual C, Colin E, Saldmann A, Gey A, Oudard S, Tartour E. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open. 2017;2(2): e000213. https://doi.org/10.1136/esmoopen-2017-000213.

Article  PubMed  PubMed Central  Google Scholar 

Jaspers JE, Brentjens RJ. Development of CAR T cells designed to improve antitumor efficacy and safety. Pharmacol Ther. 2017;178:83–91. https://doi.org/10.1016/j.pharmthera.2017.03.012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016;13(6):370–83. https://doi.org/10.1038/nrclinonc.2016.36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, Badros AZ, Garfall A, Weiss B, Finklestein J, Kulikovskaya I, Sinha SK, Kronsberg S, Gupta M, Bond S, Melchiori L, Brewer JE, Bennett AD, Gerry AB, Pumphrey NJ, June CH. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015;21(8):914–21. https://doi.org/10.1038/nm.3910.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siminiak N, Czepczyński R, Zaborowski MP, Iżycki D. Immunotherapy in ovarian cancer. Arch Immunol Ther Exp. 2022;70(1):19. https://doi.org/10.1007/s00005-022-00655-8.

Article  Google Scholar 

Wang W, Liu JR, Zou W. Immunotherapy in ovarian cancer. Surg Oncol Clin N Am. 2019;28(3):447–64. https://doi.org/10.1016/j.soc.2019.02.002.

Article  PubMed  PubMed Central  Google Scholar 

Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci. 2016;107(10):1373–9. https://doi.org/10.1111/cas.13027.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian L, Xu B, Teng KY, Song M, Zhu Z, Chen Y, Wang J, Zhang J, Feng M, Kaur B, Rodriguez L, Caligiuri MA, Yu J. Targeting Fc receptor-mediated effects and the “don’t eat me” signal with an oncolytic virus expressing an anti-CD47 antibody to treat metastatic ovarian cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2022;28(1):201–14. https://doi.org/10.1158/1078-0432.CCR-21-1248.

Article  CAS  Google Scholar 

Gebremeskel S, Nelson A, Walker B, Oliphant T, Lobert L, Mahoney D, Johnston B. Natural killer T cell immunotherapy combined with oncolytic vesicular stomatitis virus or reovirus treatments differentially increases survival in mouse models of ovarian and breast cancer metastasis. J Immunother Cancer. 2021;9(3): e002096. https://doi.org/10.1136/jitc-2020-002096.

Article  PubMed  PubMed Central  Google Scholar 

Hoare J, Campbell N, Carapuça E. Oncolytic virus immunotherapies in ovarian cancer: moving beyond adenoviruses. Porto Biomed J. 2018;3(1): e7. https://doi.org/10.1016/j.pbj.0000000000000007.

Article  PubMed  PubMed Central  Google Scholar 

Simpkins F, Flores A, Chu C, Berek JS, Lucci J 3rd, Murray S, Bauman J, Struemper H, Germaschewski F, Jonak Z, Gardner O, Toso J, Coukos G. Chemoimmunotherapy using pegylated liposomal doxorubicin and interleukin-18 in recurrent ovarian cancer: a phase I dose-escalation study. Cancer Immunol Res. 2013;1(3):168–78. https://doi.org/10.1158/2326-6066.CIR-13-0098.

Article  CAS  PubMed  Google Scholar 

Zhang X, He T, Li Y, Chen L, Liu H, Wu Y, Guo H. Dendritic cell vaccines in ovarian cancer. Front Immunol. 2021;11: 613773. https://doi.org/10.3389/fimmu.2020.613773.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Block MS, Dietz AB, Gustafson MP, Kalli KR, Erskine CL, Youssef B, Vijay GV, Allred JB, Pavelko KD, Strausbauch MA, Lin Y, Grudem ME, Jatoi A, Klampe CM, Wahner-Hendrickson AE, Weroha SJ, Glaser GE, Kumar A, Langstraat CL, Solseth ML, Cannon MJ. Th17-inducing autologous dendritic cell vaccination promotes antigen-specific cellular and humoral immunity in ovarian cancer patients. Nat Commun. 2020;11(1):5173. https://doi.org/10.1038/s41467-020-18962-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vlad AM, Budiu RA, Lenzner DE, Wang Y, Thaller JA, Colonello K, Crowley-Nowick PA, Kelley JL, Price FV, Edwards RP. A phase II trial of intraperitoneal interleukin-2 in patients with platinum-resistant or platinum-refractory ovarian cancer. Cancer Immunol Immunother: CII. 2010;59(2):293–301. https://doi.org/10.1007/s00262-009-0750-3.

Article  CAS  PubMed  Google Scholar 

Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol. 2022;15(1):28. https://doi.org/10.1186/s13045-022-01247-x.

Article  PubMed  PubMed Central  Google Scholar 

Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: strategies for improving immunogenicity and efficacy. Pharmacol Ther. 2016;165:32–49. https://doi.org/10.1016/j.pharmthera.2016.05.004.

Article  CAS  PubMed  Google Scholar 

Bonati L, Tang L. Cytokine engineering for targeted cancer immunotherapy. Curr Opin Chem Biol. 2021;62:43–52. https://doi.org/10.1016/j.cbpa.2021.01.007.

Article  CAS  PubMed  Google Scholar 

Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science. 1976;193(4257):1007–8. https://doi.org/10.1126/science.181845.

Article  CAS  PubMed  Google Scholar 

March CJ, Mosley B, Larsen A, Cerretti DP, Braedt G, Price V, Gillis S, Henney CS, Kronheim SR, Grabstein K, et al. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature. 1985;315(6021):641–7. https://doi.org/10.1038/315641a0.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif