A framework for multiexcitonic logic

Xiong, Z. H., Wu, D., Valy Vardeny, Z. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

Article  CAS  PubMed  Google Scholar 

Maeda, K. et al. Chemical compass model of avian magnetoreception. Nature 453, 387–390 (2008).

Article  CAS  PubMed  Google Scholar 

de Silva, P. A., Gunaratne, N. H. Q. & McCoy, C. P. A molecular photoionic AND gate based on fluorescent signalling. Nature 364, 42–44 (1993).

Article  Google Scholar 

Andréasson, J., Straight, S. D., Moore, T. A., Moore, A. L. & Gust, D. Molecular all-photonic encoder–decoder. J. Am. Chem. Soc. 130, 11122–11128 (2008).

Article  PubMed  Google Scholar 

Wang, J., Sun, J. & Sun, Q. Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation. IEEE Photon. Technol. Lett. 19, 541–543 (2007).

Article  Google Scholar 

Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

Article  CAS  PubMed  Google Scholar 

Frenkel, J. On the transformation of light into heat in solids. II. Phys. Rev. 37, 1276–1294 (1931).

Article  Google Scholar 

Frenkel, J. On the transformation of light into heat in solids. I. Phys. Rev. 37, 17–44 (1931).

Article  CAS  Google Scholar 

Wannier, G. H. The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191–197 (1937).

Article  CAS  Google Scholar 

Englman, R. & Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18, 145–164 (1970).

Article  CAS  Google Scholar 

Englman, R. & Jortner, J. The energy gap law for non-radiative decay in large molecules. J. Lumin. 1–2, 134–142 (1970).

Article  Google Scholar 

Yang, Z. et al. Recent advances in organic thermally activated delayed fluorescence materials. Chem. Soc. Rev. 46, 915–1016 (2017).

Article  CAS  PubMed  Google Scholar 

Grosso, G. et al. Excitonic switches operating at around 100 K. Nat. Photon. 3, 577–580 (2009).

Article  CAS  Google Scholar 

High, A. A., Hammack, A. T., Butov, L. V., Hanson, M. & Gossard, A. C. Exciton optoelectronic transistor. Opt. Lett. 32, 2466–2468 (2007).

Article  CAS  PubMed  Google Scholar 

Ye, T. et al. Room-temperature exciton-based optoelectronic switch. Small 17, 2005918 (2021).

Article  CAS  Google Scholar 

Erbas-Cakmak, S. et al. Molecular logic gates: the past, present and future. Chem. Soc. Rev. 47, 2228–2248 (2018).

Article  CAS  PubMed  Google Scholar 

Andréasson, J. & Pischel, U. Light-stimulated molecular and supramolecular systems for information processing and beyond. Coord. Chem. Rev. 429, 213695 (2021).

Article  Google Scholar 

Kim, D., Kwon, J. E. & Park, S. Y. Fully reversible multistate fluorescence switching: organogel system consisting of luminescent cyanostilbene and turn-on diarylethene. Adv. Funct. Mater. 28, 1706213 (2018).

Article  Google Scholar 

Margulies, D., Melman, G. & Shanzer, A. Fluorescein as a model molecular calculator with reset capability. Nat. Mater. 4, 768–771 (2005).

Article  CAS  PubMed  Google Scholar 

Uchacz, T. et al. Photophysical properties of 1-pyridine-3-phenylpyrazoloquinoline and molecular logic gate implementation. Dyes Pigm. 166, 490–501 (2019).

Article  CAS  Google Scholar 

Margulies, D., Melman, G., Felder, C. E., Arad-Yellin, R. & Shanzer, A. Chemical input multiplicity facilitates arithmetical processing. J. Am. Chem. Soc. 126, 15400–15401 (2004).

Article  CAS  PubMed  Google Scholar 

Andréasson, J. et al. All-photonic multifunctional molecular logic device. J. Am. Chem. Soc. 133, 11641–11648 (2011).

Article  PubMed  Google Scholar 

Wagner, R. W. & Lindsey, J. S. A molecular photonic wire. J. Am. Chem. Soc. 116, 9759–9760 (1994).

Article  CAS  Google Scholar 

Jensen, K. K., van Berlekom, S. B., Kajanus, J., Mårtensson, J. & Albinsson, B. Mediated energy transfer in covalently linked porphyrin dimers. J. Phys. Chem. A 101, 2218–2220 (1997).

Article  CAS  Google Scholar 

Tan, Z., Kote, R., Samaniego, W. N., Weininger, S. J. & McGimpsey, W. G. Intramolecular singlet–singlet and triplet–triplet energy transfer in adamantyl-linked trichromophores. J. Phys. Chem. A 103, 7612–7620 (1999).

Article  CAS  Google Scholar 

Peskin, U., Abu-Hilu, M. & Speiser, S. Approaches to molecular devices based on controlled intramolecular electronic energy and electron transfer. Electron transfer rates through flexible molecular bridges by a time-dependent super exchange model. Opt. Mater. 24, 23–29 (2003).

Article  CAS  Google Scholar 

Delor, M. et al. On the mechanism of vibrational control of light-induced charge transfer in donor–bridge–acceptor assemblies. Nat. Chem. 7, 689–695 (2015).

Article  CAS  PubMed  Google Scholar 

McGimpsey, W. G., Samaniego, W. N., Chen, L. & Wang, F. Singlet–singlet, triplet–triplet, and “optically-controlled” energy transfer in polychromophores. Preliminary models for a molecular scale shift register. J. Phys. Chem. A 102, 8679–8689 (1998).

Article  CAS  Google Scholar 

Budyka, M. F. & Li, V. M. Multifunctional photonic molecular logic gate based on a biphotochromic dyad with reduced energy transfer. ChemPhysChem 18, 260–264 (2017).

Article  CAS  PubMed  Google Scholar 

Cannon, B. L. et al. Excitonic AND logic gates on DNA brick nanobreadboards. ACS Photon. 2, 398–404 (2015).

Article  CAS  Google Scholar 

Massey, M., Medintz, I. L., Ancona, M. G. & Algar, W. R. Time-gated FRET and DNA-based photonic molecular logic gates: AND, OR, NAND, and NOR. ACS Sens. 2, 1205–1214 2017).

Article  CAS  PubMed  Google Scholar 

Nishimura, T., Fujii, R., Ogura, Y. & Tanida, J. Optically controllable molecular logic circuits. Appl. Phys. Lett. 107, 013701 (2015).

Article  Google Scholar 

LaBoda, C. D., Lebeck, A. R. & Dwyer, C. L. An optically modulated self-assembled resonance energy transfer pass gate. Nano Lett. 17, 3775–3781 (2017).

Article  CAS  PubMed  Google Scholar 

Sawaya, N. P. D., Rappoport, D., Tabor, D. P. & Aspuru-Guzik, A. Excitonics: a set of gates for molecular exciton processing and signaling. ACS Nano 12, 6410–6420 (2018).

Article  CAS  PubMed  Google Scholar 

Kasha, M. Characterization of electronic transitions in complex molecules. Disc. Faraday Soc. 9, 14–19 (1950).

Article  Google Scholar 

del Valle, J. C. & Catalán, J. Kasha’s rule: a reappraisal. Phys. Chem. Chem. Phys. 21, 10061–10069 (2019).

Article  PubMed  Google Scholar 

Remacle, F., Speiser, S. & Levine, R. D. Intermolecular and intramolecular logic gates. J. Phys. Chem. B 105, 5589–5591 (2001).

Article  CAS  Google Scholar 

Kuznetz, O., Davis, D., Salman, H., Eichen, Y. & Speiser, S. Intramolecular electronic energy transfer in rhodamine–azulene bichromophoric molecule. J. Photochem. Photobiol. A 191, 176–181 (2007).

Article  CAS  Google Scholar 

Kuznetz, O. et al. All optical full adder based on intramolecular electronic energy transfer in the rhodamine–azulene bichromophoric system. J. Phys. Chem. C 112, 15880–15885 (2008).

Article  CAS  Google Scholar 

Bearpark, M. J. et al. The azulene S1 state decays via a conical intersection: a CASSCF study with MMVB dynamics. J. Am. Chem. Soc. 118, 169–175 (1996).

Article  CAS  Google Scholar 

Tittelbach-Helmrich, D., Wagner, B. D. & Steer, R. P. Subpicosecond vibrational relaxation of the S1 states of azulene and guaiazulene in solution. Can. J. Chem. 73, 303–306 (1995).

Article  CAS  Google Scholar 

Amo, A. et al. Exciton-polariton spin switches. Nat. Photon. 4, 361–366 (2010).

Article  CAS  Google Scholar 

Wang, Y.-T. et al. Ultrafast multi-level logic gates with spin-valley coupled polarization anisotropy in monolayer MoS2. Sci. Rep. 5, 8289 (2015).

Article  CAS  PubMed  Google Scholar 

Su, R. et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv. 4, eaau0244 (2018).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif