The role and applications of extracellular vesicles in osteoporosis

Aparisi Gómez, M. P., Aparisi, F., Guglielmi, G. & Bazzocchi, A. in Imaging in Geriatrics (eds G. Guglielmi & M. Maas) 367–395 (Springer International Publishing, 2023).

Dimai, H. P. & Fahrleitner-Pammer, A. Osteoporosis and fragility fractures: currently available pharmacological options and future directions. Best. Pr. Res. Clin. Rheumatol. 36, 101780 (2022).

Article  Google Scholar 

Mitchell, P. J., Chan, D.-C., Lee, J.-K., Tabu, I. & Alpuerto, B. B. The global burden of fragility fractures – what are the differences, and where are the gaps. Best. Pr. Res. Clin. Rheumatol. 36, 101777 (2022).

Article  Google Scholar 

Xue, F. et al. 7,8-Dihydroxyflavone modulates bone formation and resorption and ameliorates ovariectomy-induced osteoporosis. eLife 10, e64872 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palacios, S. Medical treatment of osteoporosis. Climacteric 25, 43–49 (2022).

Article  CAS  PubMed  Google Scholar 

Zhou, S., Huang, G. & Chen, G. Synthesis and biological activities of drugs for the treatment of osteoporosis. Eur. J. Med. Chem. 197, 112313 (2020).

Article  CAS  PubMed  Google Scholar 

Khosla, S. & Hofbauer, L. C. Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol. 5, 898–907 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Yang, Q. et al. Role of extracellular vesicles in osteosarcoma. Int. J. Med. Sci. 19, 1216–1226 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zijlstra, A. & Di Vizio, D. Size matters in nanoscale communication. Nat. Cell Biol. 20, 228–230 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujita, Y., Yoshioka, Y. & Ochiya, T. Extracellular vesicle transfer of cancer pathogenic components. Cancer Sci. 107, 385–390 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han, C., Yang, J., Sun, J. & Qin, G. Extracellular vesicles in cardiovascular disease: biological functions and therapeutic implications. Pharm. Ther. 233, 108025 (2022).

Article  CAS  Google Scholar 

Li, T. et al. Matrix vesicles as a therapeutic target for vascular calcification. Front. Cell Dev. Biol. 10, 825622 (2022).

Wang, S. E. Extracellular vesicles in cancer therapy. Semin. Cancer Biol. 86, 296–309 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, Y. et al. Engineered extracellular vesicles for bone therapy. Nano Today 44, 101487 (2022).

Article  CAS  Google Scholar 

Cheng, L. & Hill, A. F. Therapeutically harnessing extracellular vesicles. Nat. Rev. Drug Discov. 21, 379–399 (2022).

Article  CAS  PubMed  Google Scholar 

Zhang, W., Huang, P., Lin, J. & Zeng, H. The role of extracellular vesicles in osteoporosis: a scoping review. Membranes 12, 324 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mueller, S. K., Nocera, A. L. & Bleier, B. S. Exosome function in aerodigestive mucosa. Nanomed.: Nanotechnol. Biol. Med. 14, 269–277 (2018).

Article  CAS  Google Scholar 

Rädler, J., Gupta, D., Zickler, A. & Andaloussi, S. E. L. Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Mol. Ther. 31, 1231–1250 (2023).

Article  PubMed  Google Scholar 

Fordjour, F. K., Guo, C., Ai, Y., Daaboul, G. G. & Gould, S. J. A shared, stochastic pathway mediates exosome protein budding along plasma and endosome membranes. J. Biol. Chem. 298, 102394 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mathieu, M. et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat. Commun. 12, 4389 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin, Y. et al. Extracellular signals regulate the biogenesis of extracellular vesicles. Biol. Res. 55, 35 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schöneberg, J., Lee, I.-H., Iwasa, J. H. & Hurley, J. H. Reverse-topology membrane scission by the ESCRT proteins. Nat. Rev. Mol. Cell Biol. 18, 5–17 (2017).

Article  PubMed  Google Scholar 

Vietri, M., Radulovic, M. & Stenmark, H. The many functions of ESCRTs. Nat. Rev. Mol. Cell Biol. 21, 25–42 (2020).

Article  CAS  PubMed  Google Scholar 

Bache, K. G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435–442 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teo, H. et al. ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell 125, 99–111 (2006).

Article  CAS  PubMed  Google Scholar 

Wollert, T., Wunder, C., Lippincott-Schwartz, J. & Hurley, J. H. Membrane scission by the ESCRT-III complex. Nature 458, 172–177 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stuffers, S., Sem Wegner, C., Stenmark, H. & Brech, A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10, 925–937 (2009).

Article  CAS  PubMed  Google Scholar 

Perez-Hernandez, D. et al. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J. Biol. Chem. 288, 11649–11661 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hemler, M. E. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell Dev. Biol. 19, 397–422 (2003).

Article  CAS  PubMed  Google Scholar 

Clancy, J. W., Schmidtmann, M. & D’Souza-Schorey, C. The ins and outs of microvesicles. FASEB BioAdv. 3, 399–406 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Matusek, T. et al. The ESCRT machinery regulates the secretion and long-range activity of Hedgehog. Nature 516, 99–103 (2014).

Article  CAS  PubMed  Google Scholar 

Mathieu, M., Martin-Jaular, L., Lavieu, G. & Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019).

Article  CAS  PubMed  Google Scholar 

Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

Article  CAS  PubMed  Google Scholar 

Antonyak, M. A., Wilson, K. F. & Cerione, R. A. R(h)oads to microvesicles. Small GTPases 3, 219–224 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Li, B., Antonyak, M. A., Zhang, J. & Cerione, R. A. RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene 31, 4740–4749 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schlienger, S., Campbell, S. & Claing, A. ARF1 regulates the Rho/MLC pathway to control EGF-dependent breast cancer cell invasion. Mol. Biol. Cell 25, 17–29 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Muralidharan-Chari, V. et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr. Biol. 19, 1875–1885 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saheera, S., Potnuri, A. G. & Krishnamurthy, P. Nano-Vesicle (Mis)communication in senescence-related pathologies. Cells 9, 1974 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Charest, A. Experimental and biological insights from proteomic analyses of extracellular vesicle cargos in normalcy and disease. Adv. Biosyst. 4, 2000069 (2020).

Article  Google Scholar 

Blander, J. M. The many ways tissue phagocytes respond to dyin

留言 (0)

沒有登入
gif