Molecular insights into P2X signalling cascades in acute kidney injury

Mehta RL et al (2015) International society of nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. The Lancet 385(9987):2616–2643

Article  Google Scholar 

Wilhelm K et al (2010) Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nat Med 16(12):1434–1438

Article  PubMed  CAS  Google Scholar 

Sluyter R et al (2023) Purinergic signalling in graft-versus-host disease. Curr Opin Pharmacol 68:102346

Article  PubMed  CAS  Google Scholar 

Bailey MA, Unwin RJ, Shirley DG (2012) P2X receptors and kidney function. Wiley Interdisciplinary Reviews: Membrane Transport and Signaling 1(4):503–511

CAS  Google Scholar 

Zhang W et al (2022) The role of the superior cervical sympathetic ganglion in ischemia reperfusion-induced acute kidney injury in rats. Front Med 9:792000

Article  Google Scholar 

Han SJ et al (2020) P2X4 receptor exacerbates ischemic AKI and induces renal proximal tubular NLRP3 inflammasome signaling. FASEB J 34(4):5465–5482

Article  PubMed  CAS  Google Scholar 

Qian Y et al (2021) P2X7 receptor signaling promotes inflammation in renal parenchymal cells suffering from ischemia-reperfusion injury. Cell Death Dis 12(1):132

Article  PubMed  PubMed Central  CAS  Google Scholar 

Burnstock G, Knight GE (2018) The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signalling 14(1):1–18

Article  PubMed  CAS  Google Scholar 

Pichler R et al (2017) Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am J Physiol Renal Physiol 312(4):F716–F731

Article  PubMed  CAS  Google Scholar 

Mahmood A, Iqbal J (2022) Purinergic receptors modulators: an emerging pharmacological tool for disease management. Med Res Rev 42(4):1661–1703

Article  PubMed  CAS  Google Scholar 

Illes P et al (2021) Update of P2X receptor properties and their pharmacology: IUPHAR review 30. Br J Pharmacol 178(3):489–514

Article  PubMed  CAS  Google Scholar 

Osmond DA, Inscho EW (2010) P2X(1) receptor blockade inhibits whole kidney autoregulation of renal blood flow in vivo. Am J Physiol Renal Physiol 298(6):F1360–F1368

Article  PubMed  PubMed Central  CAS  Google Scholar 

Franco M et al (2017) Physiopathological implications of P2X1 and P2X7 receptors in regulation of glomerular hemodynamics in angiotensin II-induced hypertension. Am J Physiology-Renal Physiol 313(1):F9–F19

Article  CAS  Google Scholar 

Rettinger J, Schmalzing G (2004) Desensitization masks nanomolar potency of ATP for the P2X1 receptor. J Biol Chem 279(8):6426–6433

Article  PubMed  CAS  Google Scholar 

Ennion SJ, Evans RJ (2001) Agonist-stimulated internalisation of the ligand‐gated ion channel P2X1 in rat vas deferens. FEBS Lett 489(2–3):154–158

Article  PubMed  CAS  Google Scholar 

Bennetts FM et al (2022) The P2X1 receptor as a therapeutic target. Purinergic Signalling 18(4):421–433

Article  PubMed  PubMed Central  CAS  Google Scholar 

Vial C, Evans RJ (2002) P2X1 receptor-deficient mice establish the native P2X receptor and a P2Y6-like receptor in arteries. Mol Pharmacol 62(6):1438–1445

Article  PubMed  CAS  Google Scholar 

Billaud M et al (2011) Pannexin1 regulates α1-adrenergic receptor– mediated vasoconstriction. Circul Res 109(1):80–85

Article  CAS  Google Scholar 

Kluess HA et al (2005) Acidosis attenuates P2X purinergic vasoconstriction in skeletal muscle arteries. Am J Physiol Heart Circ Physiol 288(1):H129–H132

Article  PubMed  CAS  Google Scholar 

Mancinelli R et al (2014) Extracellular GTP is a potent water-transport regulator via aquaporin 5 plasma-membrane insertion in M1-CCD epithelial cortical collecting duct cells. Cell Physiol Biochem 33(3):731–746

Article  PubMed  CAS  Google Scholar 

Kuczeriszka M et al (2016) Influence of P2X receptors on renal medullary circulation is not altered by angiotensin II pretreatment. Pharmacol Rep 68:1230–1236

Article  PubMed  CAS  Google Scholar 

Wildman SS et al (2009) Nucleotides downregulate aquaporin 2 via activation of apical P2 receptors. J Am Soc Nephrol 20(7):1480–1490

Article  PubMed  PubMed Central  CAS  Google Scholar 

Craigie E et al (2018) The renal and blood pressure response to low sodium diet in P2X4 receptor knockout mice. Physiological Rep 6(20):e13899

Article  Google Scholar 

Burnstock G, M.A. Evans Lc Fau - Bailey, and Bailey MA (1573–9546 (Electronic)) Purinergic signalling in the kidney in health and disease.

Kim H et al (2017) The purinergic receptor P2X5 regulates inflammasome activity and hyper-multinucleation of murine osteoclasts. Sci Rep 7(1):196

Article  PubMed  PubMed Central  Google Scholar 

Kim H et al (2018) The purinergic receptor P2X5 contributes to bone loss in experimental periodontitis. BMB Rep 51(9):468–473

Article  PubMed  PubMed Central  CAS  Google Scholar 

Turner CM et al (2003) The pattern of distribution of selected ATP-sensitive P2 receptor subtypes in normal rat kidney: an immunohistological study. Cells Tissues Organs 175(2):105–117

Article  PubMed  CAS  Google Scholar 

Vallon V et al (2020) Extracellular nucleotides and P2 receptors in renal function. Physiol Rev 100(1):211–269

Article  PubMed  CAS  Google Scholar 

de Baaij JHF et al (2016) P2X6 knockout mice exhibit normal electrolyte homeostasis. PLoS ONE 11(6):e0156803

Article  PubMed  PubMed Central  Google Scholar 

Hillman KA, Burnstock G, Unwin RJ (2005) The P2X7 ATP receptor in the kidney: a matter of life or death? Nephron Experimental Nephrology 101(1):e24–e30

Article  PubMed  CAS  Google Scholar 

Jiang L-H et al (2021) Structural basis for the functional properties of the P2X7 receptor for extracellular ATP. Purinergic Signalling 17(3):331–344

Article  PubMed  PubMed Central  CAS  Google Scholar 

Di Virgilio F, Schmalzing G, Markwardt F (2018) The elusive P2X7 macropore. Trends Cell Biol 28(5):392–404

Article  PubMed  Google Scholar 

Serife C-S, Kemal S, Mehmet U (2009) P2X7 receptor activates multiple selective dye-permeation pathways in RAW 264.7 and human embryonic kidney 293 cells. Mol Pharmacol 76(6):1323

Article  Google Scholar 

Gonçalves RG et al (2006) The role of purinergic P2X7 receptors in the inflammation and fibrosis of unilateral ureteral obstruction in mice. Kidney Int 70(9):1599–1606

Article  PubMed  Google Scholar 

Menzies RI et al (2013) Effect of P2X4 and P2X7 receptor antagonism on the pressure diuresis relationship in rats. Front Physiol 4:305

Article  PubMed  PubMed Central  Google Scholar 

Feng W et al (2021) Restoration of afferent arteriolar autoregulatory behavior in ischemia-reperfusion injury in rat kidneys. Am J Physiology-Renal Physiol 320(3):F429–F441

Article  CAS  Google Scholar 

Guan Z et al (2023) Mitochondria and renal microvascular dysfunction following ischemia-reperfusion in rats. Physiology 38(S1):5729680

Article  Google Scholar 

Inscho EW et al (2003) Physiological role for P2X 1 receptors in renal microvascular autoregulatory behavior. J Clin Investig 112(12):1895–1905

Article  PubMed  PubMed Central  CAS  Google Scholar 

Inscho EW et al (2004) Renal autoregulation in P2X1 knockout mice. Acta Physiol Scand 181(4):445–453

Article  PubMed  CAS  Google Scholar 

Menzies RI et al (2017) Purinergic signaling in kidney disease. Kidney Int 91(2):315–323

Article  PubMed  CAS  Google Scholar 

Davenport AJ et al (2021) Eliapixant is a selective P2X3 receptor antagonist for the treatment of disorders associated with hypersensitive nerve fibers. Sci Rep 11(1):19877

Article  PubMed 

留言 (0)

沒有登入
gif