Oxidation of dopamine and related catechols in dopaminergic brain regions in Parkinson’s disease and during ageing in non-Parkinsonian subjects

Ambani LM, Melvin H, Van Woert MH, Murphy S (1975) Brain peroxidase and catalase in Parkinson disease. Arch Neurol 32:114–118

Article  CAS  PubMed  Google Scholar 

Anton AH, Sayre DF (1962) A study of the factors affecting the aluminum oxide trihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138:360–375

CAS  PubMed  Google Scholar 

Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517

Article  CAS  PubMed  Google Scholar 

Ben-Shachar D, Riederer P, Youdim MBH (1991) Iron–melanin interaction and lipid peroxidation: implications for Parkinson’s disease. J Neurochem 57(5):1609–1614. https://doi.org/10.1111/j.1471-4159.1991.tb06358.x

Article  CAS  PubMed  Google Scholar 

Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20(4):415–455. https://doi.org/10.1016/0022-510x(73)90175-5

Article  CAS  PubMed  Google Scholar 

Bisaglia M, Mammi S, Bubacco L (2007) Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem 282(21):15597–15605. https://doi.org/10.1074/jbc.M610893200

Article  CAS  PubMed  Google Scholar 

Borghammer P, Van Den Berge N (2019) Brain-first versus gut-first Parkinson’s disease: a hypothesis. J Parkinson’s Dis 9(s2):S281–S295. https://doi.org/10.3233/JPD-191721

Article  CAS  Google Scholar 

Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211. https://doi.org/10.1016/s0197-4580(02)00065-9

Article  PubMed  Google Scholar 

Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, Santos DP, Blanz J, Obermaier CD, Strojny C, Savas JN, Kiskinis E, Zhuang X, Krüger R, Surmeier DJ, Kranic D (2017) Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 357(6357):1255–1261. https://doi.org/10.1126/science.aam9080

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai W, Wakamatsu K, Zucca FA, Wang Q, Yang K, Mohamadzadehonarvar N, Srivastava P, Tanaka H, Holly G, Casella L, Ito S, Zecca L, Chen X (2023) DOPA pheomelanin is increased in nigral neuromelanin of Parkinson’s disease. Prog Neurobiol 223:102414. https://doi.org/10.1016/j.pneurobio.2023.102414

Article  CAS  PubMed  Google Scholar 

Carlsson A (1981) Aging and brain neurotransmitters. In: Platt D (ed) Funktionsstörungen des Gehirns im Alter. F.K. Schattauer Verlag, Stuttgart/New York, pp 67–81

Google Scholar 

Carlsson A, Fornstedt B (1991) Possible mechanisms underlying the special vulnerability of dopaminergic neurons. Acta Neurol Scand Suppl 136:16–18. https://doi.org/10.1111/j.1600-0404.1991.tb05014.x

Article  CAS  PubMed  Google Scholar 

Carstam R, Brinck C, Fornstedt B, Rorsman H, Rosengren E (1990) 5-S-cysteinyldopac in human urine. Acta Derm Venereol 70(5):373–377 (PMID: 1980968)

Article  CAS  PubMed  Google Scholar 

Ceballos I, Lafon M, Javoy-Agid F, Hirsch E, Sinet PM, Agid Y (1990) Superoxide dismutase and Parkinson’s disease. Lancet 335:1035–1036

Article  CAS  PubMed  Google Scholar 

Cohen G (1983) The pathobiology of Parkinson’s disease: Biochemical aspects of dopamine neuron senescence. J Neural Transm 19(suppl):89–103

CAS  Google Scholar 

Cohen G, Spina MB (1989) Deprenyl supresses the oxidant stress associated with increased dopamine turnover. Ann Neurol 26:689–690

Article  CAS  PubMed  Google Scholar 

Dexter D, Carter C, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1986) Lipid peroxidation as cause of nigral cell death in Parkinson’s disease. Lancet 2:639–640

Article  CAS  PubMed  Google Scholar 

Dexter DT, Wells FR, Agid F, Agid Y, Lees AJ, Jenner P, Mardsen CD (1987) Increased nigral iron content in postmortem parkinsonian brain. Lancet 2:1219–1220

Article  CAS  PubMed  Google Scholar 

Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Mardsen CD (1989) Increased nigral iron content and alterations in other metal ioans occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836

Article  CAS  PubMed  Google Scholar 

Dexter DT, Carayon A, Vidailhet M, Ruberg M, Agid F, Agid Y, Lees AJ, Wells FR, Jenner P, Mardsen CD (1990) Decreased ferritin levels in brain in Parkinson’s disease. J Neurochem 55:16–20

Article  CAS  PubMed  Google Scholar 

Ehringer H, Hornykiewicz O (1960) Verteilung von noradrenalin und dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erktankungen des Extrapyramidalen Systems. Klin Wschr 38:1236–1239

Article  CAS  PubMed  Google Scholar 

Engelen M, Vanna R, Bellei C, Zucca FA, Wakamatsu K, Monzani E, Ito S, Casella L, Zecca L (2012) Neuromelanins of human brain have soluble and insoluble components with dolichols attached to the melanic structure. PLoS One 7(11):e48490. https://doi.org/10.1371/journal.pone.0048490

Article  CAS  PubMed  PubMed Central  Google Scholar 

Engelender S, Isacson O (2017) The threshold theory for Parkinson’s disease. Trends Neurosci 40(1):4–14. https://doi.org/10.1016/j.tins.2016.10.008

Article  CAS  PubMed  Google Scholar 

Fasano M, Bergamsco B, Lopiano L (2006) Modifications of the iron-neuromelanin system in Parkinson’s disease. J Neurochem 96(4):909–916

Article  CAS  PubMed  Google Scholar 

Fofani G, Obeso JA (2018) A cortical pathogenic theory of Parkinson’s disease. Neuron 99(6):1116–1128. https://doi.org/10.1016/j.neuron.2018.07.028

Article  CAS  Google Scholar 

Fornstedt B, Carlsson A (1989) A marked rise in 5-S-cysteinyl-dopamine levels in guinea-pig striatum following reserpine treatment. J Neural Transm 76(2):155–161. https://doi.org/10.1007/BF01578755

Article  CAS  PubMed  Google Scholar 

Fornstedt B, Carlsson A (1991a) Effects of inhibition of monoamine oxidase on the levels of 5-S-cysteinyl adducts of catechols in dopaminergic regions of the brain of the guinea pig. Neuropharmacology 30(5):463–468. https://doi.org/10.1016/0028-3908(91)90007-x

Article  CAS  PubMed  Google Scholar 

Fornstedt B, Carlsson A (1991b) Vitamin C deficiency facilitates 5-S-cysteinyldopamine formation in guinea pig striatum. J Neurochem 56(2):407–414. https://doi.org/10.1111/j.1471-4159.1991.tb08166.x

Article  CAS  PubMed  Google Scholar 

Fornstedt B, Rosengren E, Carlsson A (1986) Occurrence and distribution of 5-S-cysteinyl derivatives of dopamine, dopa and dopac in the brains of eight mammalian species. Neuropharmacology 25(4):451–454. https://doi.org/10.1016/0028-3908(86)90242-x

Article  CAS  PubMed  Google Scholar 

Fornstedt B, Brun A, Rosengren E, Carlsson A (1989) The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra. J Neural Transm Park Dis Dement Sect 1(4):279–295. https://doi.org/10.1007/BF02263482

Article  CAS  PubMed  Google Scholar 

Fornstedt B, Bergh I, Rosengren E, Carlsson A (1990a) An improved HPLC-electrochemical detection method for measuring brain levels of 5-S-cysteinyldopamine, 5-S-cysteinyl-3,4-dihydroxyphenylalanine, and 5-S-cysteinyl-3,4-dihydroxyphenylacetic acid. J Neurochem 54(2):578–586. https://doi.org/10.1111/j.1471-4159.1990.tb01910.x

Article  CAS  PubMed  Google Scholar 

Fornstedt B, Pileblad E, Carlsson A (1990b) In vivo autoxidation of dopamine in guinea pig striatum increases with age. J Neurochem 55(2):655–659. https://doi.org/10.1111/j.1471-4159.1990.tb04183.x

Article  CAS  PubMed  Google Scholar 

FornstedtWallin B, Bergh I (1995) A sensitive high-performance liquid chromatographic method for the determination 5-S-cysteinyldopamine, of 5-S-cysteinyl-3,4-dihydroxyphenylacetic acid and of 5-S-cysteinyl-3,4-dihydroxyphenylalanine. J Chromatogr B 663:9–14

Article  CAS  Google Scholar 

Goldstein DS (2021) The catecholaldehyde hypothesis for the pathogenesis of catecholaminergic neurodegeneration: what we know and what we do not know. Int J Mol Sci 22:5999. https://doi.org/10.3390/ijms22115999

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goldstein DS, Sullivan P, Holmes C, Miller GW, Alter S, Strong R, Mash DC, Kopin IJ, Sharabi Y (2013) Determinants of buildup of the toxic dopamine metabolite DOPAL in Parkinson’s disease. J Neurochem 126:591–603

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif