Formulation and Characterization of Interpenetrating Polymer Network Hydrogel Bead as Drug Carrier System for Extended Release of Sulphonyl Urea Medication

Barbani N, Cascone MG, Giusti P, Lazzeri L, Polacco G, Pizziarani G. Bio artificial materials based on collagen: mixtures of soluble collagen and poly(vinylalcohol) cross-linked with gaseous glutaraldehyde. J Biomater Sci Polym Ed. 1995. https://doi.org/10.1163/156856295x00544.

Article  PubMed  Google Scholar 

Cascone MG. Dynamic - mechanical properties of bio artificial polymeric materials. Polym Int. 1997. https://doi.org/10.1002/(SICI)1097-0126(199705)43:1%3C55::AID-PI762%3E3.0.CO;2-%23.

Article  Google Scholar 

Sperling L, Hu R. Interpenetrating polymer networks. In: Utracki LA, Wilkie C, editors. Polymer Blends Handbook. 2nd ed. Dordrecht: Springer; 2014. p. 677–724.

Chapter  Google Scholar 

Raina N, Rani R, Khan A, Nagpal K, Gupta M. Interpenetrating polymer network as a pioneer drug delivery system: a review. Polym Bull. 2020;5027–50. https://doi.org/10.1007/s00289-019-02996-5.

Biswas A, Mondal S, Das SK, Bose A, Thomas S, Ghosal K, Roy S, Provaznik I. Development and characterization of natural product derived macromolecules based interpenetrating polymer network for therapeutic drug targeting. ACS Omega. 2021;28699–709. https://doi.org/10.1021/acsomega.1c03363.

Santos LA. Natural polymeric biomaterials: processing and properties. Reference module in materials science and materials engineering; Elsevier: Amsterdam, The Netherlands. 2017. https://doi.org/10.1016/B978-0-12-803581-8.02253-0.

Desai NP, Sojomihardjo A, Yao Z, Ron N, Soon-Shiong P. Interpenetrating polymer networks of alginate and polyethylene glycol for encapsulation of islets of Langerhans. J Microencapsul. 2000. https://doi.org/10.1080/02652040050161675.

Article  PubMed  Google Scholar 

Singhvi G, Hans N, Shiva N, Dubey SK. Xanthan gum in drug delivery applications. InNatural polysaccharides in drug delivery and biomedical applications. Academic Press. 2019. https://doi.org/10.1016/B978-0-12-817055-7.00005-4.

Mandal S, Basu SK, Sa B. Ca2+ ion cross-linked interpenetrating network matrix tablets of polyacrylamide-grafted-sodium alginate and sodium alginate for sustained release of diltiazem hydrochloride. Carbohydr Polym. 2010. https://doi.org/10.1016/j.carbpol.2010.06.009.

Article  Google Scholar 

Kubo W, Miyazaki S, Attwood D. Oral sustained delivery of paracetamol from in situ-gelling gellan and sodium alginate formulations. Int J Pharm. 2003. https://doi.org/10.1016/S0378-5173(03)00163-7.

Article  PubMed  Google Scholar 

Saadatlou GA, Pircheraghi G. Concentrated regimes of xanthan-based hydrogels crosslinked with multifunctional crosslinkers. Carbohydr Polym Technol Appl. 2021. https://doi.org/10.1016/j.carpta.2021.100047.

Article  Google Scholar 

Calo E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J. 2015. https://doi.org/10.1016/j.eurpolymj.2014.11.024.

Article  Google Scholar 

Tao Y, Zhang R, Xu W, Bai Z, Zhou Y, Zhao S, Xu Y, Yu D. Rheological behavior and microstructure of release-controlled hydrogels based on xanthan gum crosslinked with sodium trimetaphosphate. Food Hydrocoll. 2016. https://doi.org/10.1016/J.FOODHYD.2015.09.006.

Article  Google Scholar 

Ray S, Banerjee S, Maiti S, Laha B, Barik S, Sa B, Bhattacharyya UK. Novel interpenetrating network microspheres of xanthan gum–poly (vinyl alcohol) for the delivery of diclofenac sodium to the intestine-in vitro and in vivo evaluation. Drug Delivery. 2010. https://doi.org/10.3109/10717544.2010.483256.

Article  PubMed  Google Scholar 

Alupei IC, Popa M, Hamcerencu M, Abadie MJ. Superabsorbant hydrogels based on xanthan and poly (vinyl alcohol): 1. The study of the swelling properties. Eur Polym J. 2002. https://doi.org/10.1016/S0014-3057(02)00106-4.

Sellamuthu K, Angappan S. Design, development and characterization of interpenetrating polymer network hydrogel bead for controlled release of glipizide drug. Drug Dev Ind Pharm. 2022. https://doi.org/10.1080/03639045.2022.2130939.

Article  PubMed  Google Scholar 

Chowdary KPR, Srinivasa YR. Design and in vitro evaluation of mucoadhesive controlled release oral tablet of glipizide. Indian J Pharm. 2003. https://doi.org/10.1208/pt040339.

Article  Google Scholar 

Verma RK, Garg S. Development and evaluation of osmotically controlled oral delivery system of glipizide. Eur J Pharm Biopharm. 2004. https://doi.org/10.1016/j.ejpb.2004.02.003.

Article  PubMed  Google Scholar 

Harlay CR. Glipizide GRTS has advantages over other second generation sulfonylurea. Clin Drug Invest. 2002.

Patel JK, Patel RP, Amin AF, Patel MM. Formulation and evaluation of mucoadhesive glipizide microspheres. AAPS Pharm Sci Tech. 2005. https://doi.org/10.1208/pt060110.

Article  Google Scholar 

Hesieh SH, Lin JD, Chang HY, Ho Ch, Liou MJ. Sustained release versus immediate release glipizide for the treatment of diabetes mellitus in Chinese patients: a randomized, double blind, double dummy, parallel group, 12 week clinical study. ClinTher. 2006. https://doi.org/10.1016/j.clinthera.2006.09.010.

Article  Google Scholar 

Dey S. Pramanik S, Malgope A. Formulation and optimization of sustained release stavudine microspheres using response surface methodology. Int Sci Res Notices. 2011. https://doi.org/10.5402%2F2011%2F627623.

Kulkarni RV, Sa B. Polyacrylamide-grafted-alginate-based pH-sensitive hydrogel beads for delivery of ketoprofen to the intestine: in vitro and in vivo evaluation. J Biomater Sci Polym Ed. 2009. https://doi.org/10.1163/156856209x404514.

Article  PubMed  Google Scholar 

Zhang Y, Liu J, Huang L, Wang Z, Wang L. Design and performance of a sericin-alginate interpenetrating network hydrogel for cell and drug delivery. Sci Rep. 2015. https://doi.org/10.1038/srep12374.

Article  PubMed  PubMed Central  Google Scholar 

Bhattarai N, Ramay HR, Gunn J, Frederick AM, Zhang M. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release. 2005. https://doi.org/10.1016/j.jconrel.2004.12.019.

Article  PubMed  Google Scholar 

Dubey S, Bajpai SK. Poly(methacrylamide-co-acrylic acid)hydrogels for gastrointestinal delivery of theophylline. I. Swelling characterization. J Appl Polym Sci. 2006. https://doi.org/10.1002/app.23542.

Philips GO, Williams PA. Handbook of hydrocolloids. 2nd ed. New York: Woodhead Publishing Limited; 2009. p. 118–202.

Book  Google Scholar 

Goddard ED, Gruber JV. Principles of polymer science and technology in cosmetics and personal care. Marcel Dekkner Inc.: New York: Basel; 1999.

Gruber JV, Konish PN. Building aqueous viscosity through synergistic polymer–polymer interactions. ACS Symposium Series. 1999. pp. 252–261.

Pongjanyakul T, Puttipipatkhachorn S. Xanthan–alginate composite gel beads: molecular interaction and in vitro characterization. Int J Pharm. 2007. https://doi.org/10.1016/j.ijpharm.2006.09.011.

Article  PubMed  Google Scholar 

Nafo W. Hydrogel biomaterials for drug delivery: mechanisms, design, and drugs in hydrogels - from tradition to innovative platforms with multiple applications. South Korea Intechopen. 2022. https://doi.org/10.5772/intechopen.103156.

Article  Google Scholar 

Gazori T, Khoshayand MR, Azizi E, Yazdizade P. Evaluation of alginate/chitosan nanoparticles as antisense delivery vector: formulation, optimization and in vitro characterization. Carbohyd Polym. 2009. https://doi.org/10.1016/j.carbpol.2009.02.019.

Article  Google Scholar 

Ray R, Maity S, Mandal S, Chatterjee TK, Sa B. Development and evaluation of a new interpenetrating network bead of sodium carboxymethyl xanthan and sodium alginate. Pharmacology & Pharmacy. 2010. https://doi.org/10.4236/pp.2010.11002.

Article  Google Scholar 

Kankala R.K, Wang S, Chen A, Zhang Y.S. Handbook of nanomaterials for cancer theranostics. Chapter 2 - Self-assembled nanogels: from particles to scaffolds and membranes. Elsevier. 2018. https://doi.org/10.1016/B978-0-12-813339-2.00002-5.

Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002. pp. 3–12. https://doi.org/10.1016/j.addr.2012.09.010.

Pasparakis G, Bouropoulos N. Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate-chitosan beads. Int J Pharm. 2006. https://doi.org/10.1016/j.ijpharm.2006.05.054.

Article  PubMed  Google Scholar 

Chen J, Liu M, Chen S. Synthesis and characterization of thermo- and pH-sensitive kappa-carrageenan-g-poly(methacrylic acid)/poly(N, N-diethylacrylamide) semi-IPN hydrogel. Mater Chem Phys. 2009. https://doi.org/10.1016/j.matchemphys.2008.12.026.

Article  Google Scholar 

Sugawara S, Imai T, Otagiri M. The controlled release of prednisolone using alginate gel. Pharm Res. 1994. https://doi.org/10.1023/a:1018963626248.

Article  PubMed  Google Scholar 

Dainty AL, Goulding KH, Robinson PK, Simpkins I, Trevan MD. Stability of alginate-immobilized algal cells. Biotechnol Bioeng. 1986. https://doi.org/10.1002/bit.260280210.

Article  PubMed  Google Scholar 

Kikuchi K, Kawabuchi M, Sugihara M, Sakurai Y, Okano T. Pulsed dextran release from calcium-alginate gel beads. J Control Release. 1997. https://doi.org/10.1016/S0168-3659(96)01612-4.

Article  Google Scholar 

Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010.

Paarakh MP, Jose PA, Setty CM, Christoper GVP. Release kinetics-concepts and applications. Int J Pharm res technol. 2018. https://doi.org/10.31838/ijprt/08.01.02.

Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001. https://doi.org/10.1016/s0928-0987(01)00095-1.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif