Identification of α-mangostin as a potent inhibitor of β-lactamase OXA-48

Livermore DM, Woodford N. The beta-lactamase threat in Enterobacteriaceae, pseudomonas and acinetobacter. Trends Microbiol. 2006;14(9):413–20. https://doi.org/10.1016/j.tim.2006.07.008

Article  CAS  PubMed  Google Scholar 

Fisher JF, Meroueh SO, Mobashery SJC. Bacterial resistance to β-Lactam antibiotics: compelling opportunism, compelling opportunity. Cheminform. 2005;36(24):395–424. https://doi.org/10.1021/cr030102i

Article  CAS  Google Scholar 

Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–76. https://doi.org/10.1128/AAC.01009-09

Article  CAS  PubMed  Google Scholar 

Alm RA, Johnstone MR, Lahiri SD. Characterization of escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: role of a novel insertion in PBP3. J Antimicrob Chemother. 2015;5:1420–8.https://doi.org/10.1093/jac/dku568

Article  CAS  Google Scholar 

Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980;289(1036):321–31. https://doi.org/10.1098/rstb.1980.0049

Article  CAS  PubMed  Google Scholar 

Crowder MW, Spencer J, Vila AJ. Metallo-β-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc Chem Res. 2006;39(10):721–8. https://doi.org/10.1021/ar0400241

Article  CAS  PubMed  Google Scholar 

Thomas CP, Moore LSP, Elamin N, Doumith M, Zhang J, Maharjan S, et al. Early (2008–2010) hospital outbreak of Klebsiella pneumoniae producing OXA-48 carbapenemase in the UK. Int J Antimicrob Agents. 2013;42(6):531–6. https://doi.org/10.1016/j.ijantimicag

Article  CAS  PubMed  Google Scholar 

Dautzenberg M, Ossewaarde J, Kraker MD, Zee AVD, Bonten MJ. Successful control of a hospital-wide outbreak of OXA-48 producing Enterobacteriaceae in the Netherlands, 2009 to 2011. Eur Surveill. 2014;19(9):30–41. https://doi.org/10.2807/1560-7917.es2014.19.9.20723

Article  Google Scholar 

Pfeifer Y, Schlatterer K, Engelmann E, Schiller RA, Frangenberg HR, Stiewe D, et al. Emergence of OXA-48-type carbapenemase-producing Enterobacteriaceae in German hospitals. Antimicrob Agents Chemother. 2012;56(4):2125–8. https://doi.org/10.1128/AAC.05315-11

Article  CAS  PubMed  PubMed Central  Google Scholar 

Potron AS, Schrenzel J, Poirel L, Renzi G, Cherkaoui A. Nordmann PJIJAA. Emergence of OXA-48-producing Enterobacteriaceae in Switzerland. Int J Antimicrob Agents. 2012;40(6):563–4. https://doi.org/10.1016/j.ijantimicag

Article  CAS  PubMed  Google Scholar 

Hammoudi D, Moubareck CA, Aires J, Adaime A, Barakat A, Fayad N, et al. Countrywide spread of OXA-48 carbapenemase in Lebanon: surveillance and genetic characterization of carbapenem-non-susceptible Enterobacteriaceae in 10 hospitals over a one-year period. Int J Infect Dis. 2014;29:139–44. https://doi.org/10.1016/j.ijid.2014.07.017

Article  CAS  PubMed  Google Scholar 

Aqel AA, Findlay J, Al-Maayteh M, Al-Kaabneh A, Hopkins KL, Alzoubi H, et al. Characterization of carbapenemase-producing Enterobacteriaceae from Patients in Amman, Jordan. Micro Drug Resist. 2018;24(8):1121–7. https://doi.org/10.1089/mdr.2017.0238

Article  CAS  Google Scholar 

Messaoudi A, Haenni M, Bouallègue Olfa, Saras E, Chatre P, Chaouch C, et al. Dynamics and molecular features of OXA-48-like-producing Klebsiella pneumoniae lineages in a Tunisian hospital. J Glob Antimicrob Resist. 2020;20:87–93. https://doi.org/10.1016/j.jgar.2019.07.005

Article  PubMed  Google Scholar 

Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012;67(7):1597–606. https://doi.org/10.1093/jac/dks121

Article  CAS  PubMed  Google Scholar 

Liscio JL, Mahoney MV, Hirsch EB. Ceftolozane/tazobactam and ceftazidime/avibactam: two novel β-lactam/β-lactamase inhibitor combination agents for the treatment of resistant Gram-negative bacterial infections. Int J Antimicrob Agents. 2015;46(3):266–71. https://doi.org/10.1016/j.ijantimicag.2015.05.003

Article  CAS  PubMed  Google Scholar 

Shields RK, Chen L, Cheng S, Chavda KD, Press EG, Snyder A, et al. Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant klebsiella pneumoniae Infections. Antimicrob Agents Chemother. 2017;61(3):AAC.02097-16. https://doi.org/10.1128/AAC.02097-16

Article  Google Scholar 

Vallejo JA, Martínez-Guitián M, Vázquez-Ucha JC, González-Bello C, Poza M, Buynak JD, et al. LN-1-255, a penicillanic acid sulfone able to inhibit the class D carbapenemase OXA-48. J Antimicrob Chemother. 2016;71:2171–80. https://doi.org/10.1093/jac/dkw105

Article  PubMed  PubMed Central  Google Scholar 

Garofalo B, Prati F, Buonfiglio R, Coletta I, Ombrato R. Discovery of novel chemical series of OXA-48 β-lactamase inhibitors by high-throughput screening. Pharmaceuticals. 2021;14(7):612 https://doi.org/10.3390/ph14070612

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahabusarakam W, Kuaha K, Wilairat P, Taylor WC. Prenylated xanthones as potential antiplasmodial substances. Planta Med. 2006;72(10):912–6. https://doi.org/10.1055/s-2006-947190

Article  CAS  PubMed  Google Scholar 

Teng Z, Guo Y, Liu X, Zhang J, Niu X, Yu Q, et al. Theaflavin‐3,3‐digallate increases the antibacterial activity of β‐lactam antibiotics by inhibiting metallo‐β‐lactamase activity. J Cell Mol Med. 2019;10:6955–64. https://doi.org/10.1111/jcmm.14580

Article  CAS  Google Scholar 

Wang Y, Sun X, Kong F, Xia L, Wang J. Specific NDM-1 inhibitor of isoliquiritin enhances the activity of meropenem against NDM-1-positive Enterobacteriaceae in vitro. Int J Environ Res Public Health. 2020;17(6):2162. https://doi.org/10.3390/ijerph17062162

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu S, Zhou Y, Niu X, Wang T, Li J, Liu Z et al. Magnolol restores the activity of meropenem against NDM-1-producing Escherichia coli by inhibiting the activity of metallo-beta-lactamase. Cell Death Discovery. 2018;4(1). https://doi.org/10.1038/s41420-018-0029-6

Kumazaki M, Noguchi S, Yasui Y, Iwasaki J, Shinohara H, Yamada N, et al. Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J Nutr Biochem. 2013;24(11):1849–58. https://doi.org/10.1016/j.jnutbio.2013.04.006

Article  CAS  PubMed  Google Scholar 

Martínez A, Galano A, Vargas RJ. Free radical scavenger properties of α-mangostin: thermodynamics and kinetics of HAT and RAF mechanisms. J Phys Chem B. 2011;115(43):12591–8. https://doi.org/10.1021/jp205496u

Article  CAS  PubMed  Google Scholar 

Liu SH, Lee LT, Hu NY, Huange KK, Chen TS. Effects of alpha-mangostin on the expression of anti-inflammatory genes in U937 cells. Chin Med. 2012;7(1):19. https://doi.org/10.1186/1749-8546-7-19

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sivaranjani M, Prakash M, Gowrishankar S, Rathna J, Pandian SK, Ravi AV, et al. In vitro activity of alpha-mangostin in killing and eradicating Staphylococcus epidermidis RP62A biofilms. Appl Microbiol Biotechnol. 2017;101(8):3349–59. https://doi.org/10.1007/s00253-017-8231-7

Article  CAS  PubMed  Google Scholar 

Zhao LX, Wang Y, Liu T, Wang YX, Chen HZ, Xu JR, et al. α-Mangostin decreases β-amyloid peptides production via modulation of amyloidogenic pathway. CNS Neurosci Ther. 2017;23(6):526–34. https://doi.org/10.1111/cns.12699

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi YH, Bae JK, Chae HS, Kim YM, Chin YW. α-Mangostin regulates hepatic steatosis and obesity through SirT1-AMPK and PPARγ pathways in high-fat diet-induced obese mice. J Agric Food Chem. 2015;63(38):8399–406. https://doi.org/10.1021/acs.jafc.5b01637

Article  CAS  PubMed  Google Scholar 

Kritsanawong S, Innajak S, Imoto M, Watanapokasin RJ. Antiproliferative and apoptosis induction of α-mangostin in T47D breast cancer cells. Int J Oncol. 2016;48(5):2155–65. https://doi.org/10.3892/ijo.2016.3399

Article  CAS  PubMed  Google Scholar 

Kittipaspallop W, Taepavarapruk P, Chanchao C, Pimtong W. Acute toxicity and teratogenicity of α-mangostin in zebrafish embryos. Biol Med. 2018;15-16:1212–19. https://doi.org/10.1177/1535370218819743

Article  CAS  Google Scholar 

Zhang Y, Chen C, Cheng B, Gao L, Qin C, Zhang L, et al. Discovery of quercetin and its analogs as potent OXA-48 beta-lactamase inhibitors. Front Pharm. 2022;13:926104 https://doi.org/10.3389/fphar.2022.926104

Article  CAS  Google Scholar 

Zhang YL, Yang KW, Zhou YJ, LaCuran AE, Oelschlaeger P, Crowder MW. Diaryl-substituted azolylthioacetamides: inhibitor discovery of New Delhi metallo-beta-lactamase-1 (NDM-1). ChemMedChem. 2014;9:2445–8. https://doi.org/10.1002/cmdc.201402249

Article  CAS  PubMed  Google Scholar 

Christopeit T, Yang KW, Yang SK, Leiros HK. The structure of the metallo-β-lactamase VIM-2 in complex with a triazolylthioacetamide inhibitor. Acta Crystallogr F Struct Biol Commun. 2016;72(11):813–9. https://doi.org/10.1107/S2053230X16016113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chigan JZ, Hu Z, Liu L, Xu YS, Ding HH, Yang KW. Quinolinyl sulfonamides and sulphonyl esters exhibit inhibitory efficacy against New Delhi metallo-β-lactamase-1 (NDM-1). Bioorg Chem. 2022;120. https://doi.org/10.1016/j.bioorg.2022.105654

Copeland RA, Basavapathruni A, Moyer M, Scott MP. Impact of enzyme concentration and residence time on apparent activity recovery in jump dilution analysis. Anal Biochem. 2011;416(2):206–10.

留言 (0)

沒有登入
gif