A bispecific antibody targeting HER2 and CLDN18.2 eliminates gastric cancer cells expressing dual antigens by enhancing the immune effector function

Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer statistics 2020: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA: A Cancer. J Clin 3(71):209–249. https://doi.org/10.3322/caac.21660

Article  Google Scholar 

Wagner AD, Syn NLX, Moehler M et al (2017) Chemotherapy for advanced gastric cancer. Cochrane Database of Systematic Reviews 8(2017). https://doi.org/10.1002/14651858.CD004064.pub4

Smyth EC, Nilsson M, Grabsch HI et al (2020) Gastric cancer. The Lancet 10251(396):635–648. https://doi.org/10.1016/s0140-6736(20)31288-5

Article  CAS  Google Scholar 

Wang Y, He L, Cheng Y (2017) An independent survival prognostic role for human epidermal growth factor receptor 2 in gastric cancer: evidence from a meta-analysis. Clin Transl Oncol 2(20):212–220. https://doi.org/10.1007/s12094-017-1711-5

Article  CAS  Google Scholar 

Sakai K, Mori S, Kawamoto T et al (1986) Expression of epidermal growth factor receptors on normal human gastric epithelia and gastric carcinomas. J Natl Cancer Inst 5(77):1047–1052. https://doi.org/10.1158/1078-0432.CCR-09-1678

Article  CAS  Google Scholar 

Abrahao-Machado LF, Scapulatempo-Neto C (2016) HER2 testing in gastric cancer: an update. World J Gastroenterol 19(22):4619–4625. https://doi.org/10.3748/wjg.v22.i19.4619

Article  CAS  Google Scholar 

Cho HS, Mason K, Ramyar KX et al (2003) Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 6924(421):756–760. https://doi.org/10.1038/nature01392

Article  CAS  Google Scholar 

Petit AM, Rak J, Hung MC et al (1997) Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 6(151):1523–1530

Google Scholar 

Holmes K, Roberts OL, Thomas AM et al (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 10(19):2003–2012. https://doi.org/10.1016/j.cellsig.2007.05.013

Article  CAS  Google Scholar 

Hudis CA (2007) Trastuzumab–mechanism of action and use in clinical practice. N Engl J Med 1(357):39–51. https://doi.org/10.1056/NEJMra043186

Article  Google Scholar 

Sahin U, Koslowski M, Dhaene K et al (2008) Claudin-18 splice variant 2 is a Pan-cancer Target suitable for therapeutic antibody development. Clin Cancer Res 23(14):7624–7634. https://doi.org/10.1158/1078-0432.Ccr-08-1547

Article  Google Scholar 

Kyuno D, Takasawa A, Takasawa K et al (2022) Claudin-18.2 as a therapeutic target in cancers: cumulative findings from basic research and clinical trials. Tissue Barriers 1(10):1967080. https://doi.org/10.1080/21688370.2021.1967080

Article  CAS  Google Scholar 

Moran D, Maurus D, Rohde C et al (2018) Prevalence of CLDN18.2, HER2 and PD-L1 in gastric cancer samples. Ann Oncol 29. https://doi.org/10.1093/annonc/mdy269.101

Zhu G, Foletti D, Liu X et al (2019) Targeting CLDN18.2 by CD3 bispecific and ADC modalities for the treatments of gastric and pancreatic Cancer. Sci Rep 1(9):8420. https://doi.org/10.1038/s41598-019-44874-0

Article  CAS  Google Scholar 

Sahin U, Türeci Ö, Manikhas G et al (2021) FAST: a randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann Oncol 5(32):609–619. https://doi.org/10.1016/j.annonc.2021.02.005

Article  CAS  Google Scholar 

Hanahan D (2022) Hallmarks of Cancer: New dimensions. Cancer Discov 1(12):31–46. https://doi.org/10.1158/2159-8290.Cd-21-1059

Article  Google Scholar 

Labrijn AF, Parren PW (2016) Hitting Ebola, to the power of two. Science 6310(354):284–285. https://doi.org/10.1126/science.aaj2036

Article  Google Scholar 

Smyth EC, Nilsson M, Grabsch HI et al (2020) Gastric cancer. Lancet 10251(396):635–648. https://doi.org/10.1016/s0140-6736(20)31288-5

Article  CAS  Google Scholar 

Janjigian YY, Werner D, Pauligk C et al (2012) Prognosis of metastatic gastric and gastroesophageal junction cancer by HER2 status: a European and USA International collaborative analysis. Ann Oncol 10(23):2656–2662. https://doi.org/10.1093/annonc/mds104

Article  Google Scholar 

Cho EY, Park K, Do I et al (2013) Heterogeneity of ERBB2 in gastric carcinomas: a study of tissue microarray and matched primary and metastatic carcinomas. Mod Pathol 5(26):677–684. https://doi.org/10.1038/modpathol.2012.205

Article  CAS  Google Scholar 

Mitani S, Kawakami H (2020) Emerging targeted therapies for HER2 positive gastric Cancer that can overcome Trastuzumab Resistance. Cancers (Basel) 2(12). https://doi.org/10.3390/cancers12020400

Seo S, Ryu MH, Park YS et al (2019) Loss of HER2 positivity after anti-HER2 chemotherapy in HER2-positive gastric cancer patients: results of the GASTric cancer HER2 reassessment study 3 (GASTHER3). Gastric Cancer 3(22):527–535. https://doi.org/10.1007/s10120-018-0891-1

Article  CAS  Google Scholar 

Pellino A, Brignola S, Riello E et al (2021) Association of CLDN18 protein expression with clinicopathological features and prognosis in Advanced Gastric and Gastroesophageal Junction Adenocarcinomas. J Personalized Med 11(11). https://doi.org/10.3390/jpm11111095

Shitara K, Lordick F, Bang YJ et al (2023) Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): a multicentre, randomised, double-blind, phase 3 trial. Lancet 10389(401):1655–1668. https://doi.org/10.1016/s0140-6736(23)00620-7

Article  CAS  Google Scholar 

Xu R-H, Shitara K, Ajani JA et al (2023) Zolbetuximab + CAPOX in 1L claudin-18.2+ (CLDN18.2+)/HER2 – locally advanced (LA) or metastatic gastric or gastroesophageal junction (mG/GEJ) adenocarcinoma: primary phase 3 results from GLOW36_suppl. 41405736–405736. https://doi.org/10.1200/JCO.2023.41.36_suppl.405736

Michaelson JS, Demarest SJ, Miller B et al (2009) Anti-tumor activity of stability-engineered IgG-like bispecific antibodies targeting TRAIL-R2 and LTbetaR. MAbs 2(1): 128–141. https://doi.org/10.4161/mabs.1.2.7631

Ho M, Mazor Y, Yang C et al (2016) Enhancement of Immune Effector functions by modulating IgG’s intrinsic Affinity for Target Antigen. PLoS ONE 6(11). https://doi.org/10.1371/journal.pone.0157788

Breslin S, O’driscoll L (2016) The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance. Oncotarget 29(7):45745–45756. https://doi.org/10.18632/oncotarget.9935

Article  Google Scholar 

Zoetemelk M, Rausch M, Colin DJ et al (2019) Short-term 3D culture systems of various complexity for treatment optimization of colorectal carcinoma. Sci Rep 1(9):7103. https://doi.org/10.1038/s41598-019-42836-0

Article  CAS  Google Scholar 

Oh DY, Bang YJ (2020) HER2-targeted therapies - a role beyond breast cancer. Nat Rev Clin Oncol 1(17):33–48. https://doi.org/10.1038/s41571-019-0268-3

Article  CAS  Google Scholar 

Karanjawala ZE, Illei PB, Ashfaq R et al (2008) New markers of pancreatic cancer identified through differential gene expression analyses: claudin 18 and annexin A8. Am J Surg Pathol 2(32):188–196. https://doi.org/10.1097/PAS.0b013e31815701f3

Article  Google Scholar 

Tanaka M, Shibahara J, Fukushima N et al (2011) Claudin-18 is an early-stage marker of pancreatic carcinogenesis. J Histochem Cytochem 10(59):942–952. https://doi.org/10.1369/0022155411420569

Article  CAS  Google Scholar 

Akbari V, Chou CP, Abedi D (2020) New insights into affinity proteins for HER2-targeted therapy: beyond trastuzumab. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2(1874). https://doi.org/10.1016/j.bbcan.2020.188448

Cao W, Xing H, Li Y et al (2022) Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark Res 1(10). https://doi.org/10.1186/s40364-022-00385-1

留言 (0)

沒有登入
gif