The effect of food on the pharmacokinetics of Sutetinib maleate capsule, an irreversible EGFR tyrosine kinase inhibitor, in healthy Chinese subjects

Leiter A, Veluswamy RR, Wisnivesky JP (2023) The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol 20:624–639. https://doi.org/10.1038/s41571-023-00798-3

Article  PubMed  Google Scholar 

Li C, Lei S, Ding L, Xu Y, Wu X, Wang H, Zhang Z, Gao T et al (2023) Global burden and trends of lung cancer incidence and mortality. Chin Med J (Engl) 136:1583–1590. https://doi.org/10.1097/CM9.0000000000002529

Article  PubMed  Google Scholar 

Sun H, Zhang H, Cai H, Yuan W, Wang F, Jiang Y, Gu X, Kang Z et al (2023) Burden of Lung Cancer in China, 1990–2019: findings from the global burden of Disease Study 2019. Cancer Control 30:10732748231198749. https://doi.org/10.1177/10732748231198749

Article  PubMed  PubMed Central  Google Scholar 

Duma N, Santana-Davila R, Molina JR (2019) Non-small Cell Lung Cancer: Epidemiology, Screening, diagnosis, and treatment. Mayo Clin Proc 94:1623–1640. https://doi.org/10.1016/j.mayocp.2019.01.013

Article  CAS  PubMed  Google Scholar 

Wang M, Herbst RS, Boshoff C (2021) Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med 27:1345–1356. https://doi.org/10.1038/s41591-021-01450-2

Article  CAS  PubMed  Google Scholar 

Harrison PT, Vyse S, Huang PH (2020) Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin Cancer Biol 61:167–179. https://doi.org/10.1016/j.semcancer.2019.09.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, Gemma A, Harada M et al (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362:2380–2388. https://doi.org/10.1056/NEJMoa0909530

Article  CAS  PubMed  Google Scholar 

Stirrups R (2018) Osimertinib improves progression-free survival in NSCLC. Lancet Oncol 19:e10. https://doi.org/10.1016/S1470-2045(17)30893-8

Article  PubMed  Google Scholar 

Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, Bruno DS, Chang JY et al (2022) Non-small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice guidelines in Oncology. J Natl Compr Canc Netw 20:497–530. https://doi.org/10.6004/jnccn.2022.0025

Article  PubMed  Google Scholar 

Gazdar AF (2009) Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 28 Suppl 1S24–31. https://doi.org/10.1038/onc.2009.198

Du Z, Lovly CM (2018) Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer 17:58. https://doi.org/10.1186/s12943-018-0782-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baek JH, Sun JM, Min YJ, Cho EK, Cho BC, Kim JH, Ahn MJ, Park K (2015) Efficacy of EGFR tyrosine kinase inhibitors in patients with EGFR-mutated non-small cell lung cancer except both exon 19 deletion and exon 21 L858R: a retrospective analysis in Korea. Lung Cancer 87:148–154. https://doi.org/10.1016/j.lungcan.2014.11.013

Article  PubMed  Google Scholar 

Yang JC, Sequist LV, Geater SL, Tsai CM, Mok TS, Schuler M, Yamamoto N, Yu CJ et al (2015) Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol 16:830–838. https://doi.org/10.1016/S1470-2045(15)00026-1

Article  CAS  PubMed  Google Scholar 

Qiu Y, Tang C, Li R, Cao S, Zhang Y, Chen X (2020) Simultaneous determination of sutetinib and its active metabolite sutetinib N-oxide in human plasma by liquid chromatography-tandem mass spectrometry: evaluation of plasma stability. Biomed Chromatogr 34:e4918. https://doi.org/10.1002/bmc.4918

Article  CAS  PubMed  Google Scholar 

Carr CJ (1982) Food and drug interactions. Annu Rev Pharmacol Toxicol 22:19–29. https://doi.org/10.1146/annurev.pa.22.040182.000315

Article  CAS  PubMed  Google Scholar 

Deng J, Zhu X, Chen Z, Fan CH, Kwan HS, Wong CH, Shek KY, Zuo Z et al (2017) A review of Food-Drug interactions on oral drug absorption. Drugs 77:1833–1855. https://doi.org/10.1007/s40265-017-0832-z

Article  CAS  PubMed  Google Scholar 

EMA (2012) guideline on the investigation of drug interactions. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf. Accessed 10 February 2024

Center for Drug Evaluation NMPA (2021) Technical Guidelines for the Food-effect studies in the Development of New drugs. https://www.cde.org.cn/main/news/viewInfoCommon/4f21fc720672cf26ad0efbe0207fdced. Accessed 10 February 2024

Center for Drug Evaluation and Research (CDER) FDA (2022) Assessing the Effects of Food on Drugs in INDs and NDAs-Clinical Pharmacology Considerations Guidance for Industry. https://www.fda.gov/media/121313/download. Accessed 10 February 2024

Center for Drug Evaluation and Research (CDER) FDA (2018) Bioanalytical method validation guidance for industry. https://www.fda.gov/media/70858/download. Accessed 10 February 2024

Williams L, Davis JA, Lowenthal DT (1993) The influence of food on the absorption and metabolism of drugs. Med Clin North Am 77:815–829. https://doi.org/10.1016/s0025-7125(16)30226-7

Article  CAS  PubMed  Google Scholar 

Williams L, Hill DP Jr., Davis JA, Lowenthal DT (1996) The influence of food on the absorption and metabolism of drugs: an update. Eur J Drug Metab Pharmacokinet 21:201–211. https://doi.org/10.1007/BF03189714

Article  CAS  PubMed  Google Scholar 

Brown DG, Wobst HJ (2021) A decade of FDA-Approved drugs (2010–2019): trends and future directions. J Med Chem 64:2312–2338. https://doi.org/10.1021/acs.jmedchem.0c01516

Article  CAS  PubMed  Google Scholar 

O’shea JP, Holm R, O’driscoll CM, Griffin BT (2019) Food for thought: formulating away the food effect - a PEARRL review. J Pharm Pharmacol 71:510–535. https://doi.org/10.1111/jphp.12957

Article  CAS  PubMed  Google Scholar 

(2022) Gilotrif® (Afatinib) Tablets https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/201292s014lbl.pdf. Accessed 10 February 2024

Vishwanathan K, Dickinson PA, Bui K, Cassier PA, Greystoke A, Lisbon E, Moreno V, So K et al (2018) The Effect of Food or Omeprazole on the pharmacokinetics of Osimertinib in patients with non-small-cell Lung Cancer and in healthy volunteers. J Clin Pharmacol 58:474–484. https://doi.org/10.1002/jcph.1035

Article  CAS  PubMed  Google Scholar 

Ji W, Jiang Y, Wei Y, He K, Mu H, Wen Q, Zhang X (2022) Effect of food intake on pharmacokinetics of oral Almonertinib: a randomized crossover trial in healthy Chinese participants. Clin Pharmacol Drug Dev 11:1046–1053. https://doi.org/10.1002/cpdd.1095

Article  CAS  PubMed  Google Scholar 

Koziolek M, Alcaro S, Augustijns P, Basit AW, Grimm M, Hens B, Hoad CL, Jedamzik P et al (2019) The mechanisms of pharmacokinetic food-drug interactions - a perspective from the UNGAP group. Eur J Pharm Sci 134:31–59. https://doi.org/10.1016/j.ejps.2019.04.003

Article  CAS  PubMed  Google Scholar 

Singh BN (1999) Effects of food on clinical pharmacokinetics. Clin Pharmacokinet 37:213–255. https://doi.org/10.2165/00003088-199937030-00003

Article  CAS  PubMed  Google Scholar 

Zou HX, Zhang YF, Zhong DF, Jiang Y, Liu F, Zhao QY, Zuo Z, Zhang YF et al (2022) Effect of autoinduction and food on the pharmacokinetics of furmonertinib and its active metabolite characterized by a population pharmacokinetic model. Acta Pharmacol Sin 43:1865–1874. https://doi.org/10.1038/s41401-021-00798-y

Article  CAS  PubMed  Google Scholar 

Zhu S, Deng J, Tang Q, Heng J, Qu J, Chen Y, Chen X, Yang N et al (2020) A Randomized, Open, Single-Centre, crossed study of the Effect of Food on the pharmacokinetics of one oral dose of Alflutinib Mesylate tablets (AST2818) in healthy male subjects. Iran J Pharm Res 19:24–33. https://doi.org/10.22037/ijpr.2020.113112.14116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao Y, Cheng B, Chen Z, Li J, Liang H, Chen Y, Zhu F, Li C et al (2021) Toxicity profile of epidermal growth factor receptor tyrosine kinase inhibitors for patients with lung cancer: a systematic review and network meta-analysis. Crit Rev Oncol Hematol 160:103305. https://doi.org/10.1016/j.critrevonc.2021.103305

Article  PubMed  Google Scholar 

Takeda M, Okamoto I, Nakagawa K (2015) Pooled safety analysis of EGFR-TKI treatment for EGFR mutation-positive non-small cell lung cancer. Lung Cancer 88:74–79. https://doi.org/10.1016/j.lungcan.2015.01.026

Article  PubMed  Google Scholar 

Zhao P, Zhen H, Zhao H, Zhao L, Cao B (2022) Efficacy and safety of adjuvant EGFR-TKIs for resected non-small cell lung cancer: a systematic review and meta-analysis based on randomized control trials. BMC Cancer 22:328. https://doi.org/10.1186/s12885-022-09444-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cardenas-Fernandez D, Soberanis Pina P, Turcott JG, Chavez-Tapia N, Conde-Flores E, Cardona AF, Arrieta O (2023) Management of diarrhea induced by EGFR-TKIs in advanced lung adenocarcinoma. Ther Adv Med Oncol 15:17588359231192396. https://doi.org/10.1177/17588359231192396

Article  PubMed  PubMed Central  Google Scholar 

Cho BC, Obermannova R, Bearz A, Mckeage M, Kim DW, Batra U, Borra G, Orlov S et al (2019) Efficacy and Safety of Ceritinib (450 mg/d or 600 mg/d) with Food Versus 750-mg/d fasted in patients with ALK receptor tyrosine kinase (ALK)-Positive NSCLC: primary efficacy results from the ASCEND-8 study. J Thorac Oncol 14:1255–1265. https://doi.org/10.1016/j.jtho.2019.03.002

Article  CAS  PubMed  Google Scholar 

Wang Y, Wang M, Wang Q, Geng Z, Sun M (2017) Incidence and risk of infections associated with EGFR-TKIs in advanced non-small-cell lung cancer: a systematic review and meta-analysis of randomized controlled trials. Oncotarget 8:2

留言 (0)

沒有登入
gif