Shilajit Boosts Osteogenic Ability of Mesenchymal Stem Cells for Regeneration of Rat Bone Defect

Wang W, Yeung KW. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater. 2017;2(4):224–47.

Google Scholar 

Vidal L, Kampleitner C, Brennan MÁ, Hoornaert A, Layrolle P. Reconstruction of large skeletal defects: current clinical therapeutic strategies and future directions using 3D printing. Front Bioeng Biotechnol. 2020;8:61.

Article  Google Scholar 

Fernandez de Grado G, Keller L, Idoux-Gillet Y, Wagner Q, Musset A-M, Benkirane-Jessel N, Bornert F, Offner D. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 2018;9:2041731418776819.

Article  Google Scholar 

Rosset P, Deschaseaux F, Layrolle P. Cell therapy for bone repair. Orthop Traumatol Surg Res. 2014;100(1):S107–12.

Article  CAS  Google Scholar 

Bilgiç E, Boyacıoğlu Ö, Gizer M, Korkusuz P, Korkusuz F. Architecture of bone tissue and its adaptation to pathological conditions. In: Angin S. Comparative Kinesiology of the Human Body. 1st edn. Elsevier; 2020. pp. 71–90

Pan F-f, Shao J, Shi C-J, Li Z-p, Fu W-m, Zhang J-f. Apigenin promotes osteogenic differentiation of mesenchymal stem cells and accelerates bone fracture healing via activating Wnt/β-catenin signaling. Am J Physiol-Endocrinol Metab. 2021;320(4):E760–71.

Article  CAS  Google Scholar 

Soares IMV, Fernandes GVdO, Cavalcante LC, Leite YKPdC, Bezerra DdO, Carvalho MAMd, Carvalho CMRS. The influence of Aloe vera with mesenchymal stem cells from dental pulp on bone regeneration: characterization and treatment of non-critical defects of the tibia in rats. J Appl Oral Sci. 2019;27:e20180103.

Aiello A, Fattorusso E, Menna M, Vitalone R, Schröder HC, Müller WE. Mumijo traditional medicine: fossil deposits from antarctica (chemical composition and beneficial bioactivity). Evid-Based Complement Altern Med. 2011;2011:1.

Article  Google Scholar 

Garedew A, Feist M, Schmolz E, Lamprecht I. Thermal analysis of mumiyo, the legendary folk remedy from the Himalaya region. Thermochim Acta. 2004;417(2):301–9.

Article  CAS  Google Scholar 

Stohs SJ, Singh K, Das A, Roy S, Sen CK. Energy and health benefits of shilajit. In: Bagchi D. Sustained Energy for Enhanced Human Functions and Activity. 1st edn. Elsevier; 2017. pp. 187–204

Barouji SR, Saber A, Torbati M, Fazljou SMB, Khosroushahi AY. Health beneficial effects of Moomiaii in traditional medicine. Galen Med J. 2020;9:e1743.

Article  Google Scholar 

Dashnyam K, Bayaraa O, Mandakhbayar N, Park J-H, Lee J-H, Jang T-S, Luvsan K, Kim H-W. Nanoscale calcium salt-based formulations as potential therapeutics for osteoporosis. ACS Biomater Sci Eng. 2020;6(8):4604–13.

Article  CAS  Google Scholar 

Sadeghi SMH, Hosseini Khameneh SM, Khodadoost M, Hosseini Kasnavieh SM, Kamalinejad M, Gachkar L, Rampp T, Pasalar M. Efficacy of Momiai in tibia fracture repair: a randomized double-blinded placebo-controlled clinical trial. J Altern Complement Med. 2020;26(6):521–8.

Article  Google Scholar 

Lawley S, Gupta R, Goad J, Canerdy T, Kalidindi S. Anti-inflammatory and anti-arthritic efficacy and safety of purified shilajit in moderately arthritic dogs. J Vet Sci Anim Husb. 2013;1(3):302.

Google Scholar 

Joukar S, Najafipour H, Dabiri S, Sheibani M, Sharokhi N. Cardioprotective effect of mumie (shilajit) on experimentally induced myocardial injury. Cardiovasc Toxicol. 2014;14(3):214–21.

Article  Google Scholar 

Kangari P, Roshangar L, Iraji A, Talaei-Khozani T, Razmkhah M. Accelerating effect of Shilajit on osteogenic property of adipose-derived mesenchymal stem cells (ASCs). J Orthop Surg Res. 2022;17(1):424.

Article  Google Scholar 

Storti G, Scioli MG, Kim B-S, Orlandi A, Cervelli V. Adipose-derived stem cells in bone tissue engineering: useful tools with new applications. Stem Cells Int. 2019;2019:1.

Article  Google Scholar 

Toosi S, Naderi-Meshkin H, Kalalinia F, HosseinKhani H, Heirani-Tabasi A, Havakhah S, Nekooei S, Jafarian AH, Rezaie F, Peivandi MT. Bone defect healing is induced by collagen sponge/polyglycolic acid. J Mater Sci - Mater Med. 2019;30(3):1–10.

Article  CAS  Google Scholar 

Wilson SM, Goldwasser MS, Clark SG, Monaco E, Bionaz M, Hurley WL, Rodriguez-Zas S, Feng L, Dymon Z, Wheeler MB. Adipose-derived mesenchymal stem cells enhance healing of mandibular defects in the ramus of swine. J Oral Maxillofac Surg. 2012;70(3):e193–203.

Article  Google Scholar 

Infante A, Rodríguez CI. Osteogenesis and aging: lessons from mesenchymal stem cells. Stem Cell Res Ther. 2018;9(1):1–7.

Article  Google Scholar 

Undale AH, Westendorf JJ, Yaszemski MJ, Khosla S (2009) Mesenchymal stem cells for bone repair and metabolic bone diseases. In: Mayo Clinic Proceedings: 2009. Elsevier, 893–902

Jalili Sadrabad M, Sameni H-R, Zarbakhsh S, Ghorbani R, Naghipoor A, Jarahi A. The effect of bone and dentin matrix derivatives on the differentiation of human dental pulp stem cells for osteogenesis and dentinogenesis in a scaffold-free culture. Regen Eng Transl Med. 2022;3:416–23.

Ahangari Z, Tabatabaei FS, Hakimi N, Jalili M, Ghodsian B, Nakhaee M (2016) Comparison of propolis and calcium hydroxide in terms of mineralization and cytotoxicity using dental pulp stem cells

Abbasi N, Azizpour Y, Azizi M, Karimi E, Aidy A, Asadollahi K. The effects of mumie extract on cell proliferation and enzyme expression of human osteoblast-like cells (MG63). J Stem Cells Regen Med. 2019;15(2):18.

Google Scholar 

Labban NY. Shilajit, a novel regulator of bone/cartilage healing. Indiana University; 2013.

Google Scholar 

Kangari P, Roshangar L, Iraji A, Talaei-Khozani T, Razmkhah M. Accelerating effect of Shilajit on osteogenic property of adipose-derived mesenchymal stem cells (ASCs). J Orthop Surg Res. 2022;17(1):1–14.

Article  Google Scholar 

Levi B, James AW, Nelson ER, Vistnes D, Wu B, Lee M, Gupta A, Longaker MT. Human adipose derived stromal cells heal critical size mouse calvarial defects. PLoS One. 2010;5(6):e11177.

Article  Google Scholar 

Peterson B, Zhang J, Iglesias R, Kabo M, Hedrick M, Benhaim P, Lieberman JR. Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng. 2005;11(1–2):120–9.

Article  CAS  Google Scholar 

Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A, Ludlow JW, Stricker DM, Potiny S, Green P. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol. 2007;212(3):702–9.

Article  CAS  Google Scholar 

Lieberman JR, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone: biology and clinical applications. JBJS. 2002;84(6):1032–44.

Article  Google Scholar 

Lee K, Kim H, Kim JM, Kim JR, Kim KJ, Kim YJ, Park SI, Jeong JH. Moon Ym, Lim HS: Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function. J Cell Mol Med. 2011;15(10):2082–94.

Article  CAS  Google Scholar 

Tse W, Pendleton J, Beyer W, Egalka M, Guinan E. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: Implications in transplantation. Transplantation. 2023;75(3):389–97

Rezvanipour MPF, Malekpour R, et al. The effect of mummy on some indices of wound healing in mice. J Kerman Uni Med Sci. 2007;4:267–77.

Das A, El Masry MS, Gnyawali SC, Ghatak S, Singh K, Stewart R, Lewis M, Saha A, Gordillo G, Khanna S. Skin transcriptome of middle-aged women supplemented with natural herbo-mineral shilajit shows induction of microvascular and extracellular matrix mechanisms. J Am College Nutr. 2019;38(6):526–36.

Article  CAS  Google Scholar 

Keller JL, Housh TJ, Hill EC, Smith CM, Schmidt RJ, Johnson GO. The effects of Shilajit supplementation on fatigue-induced decreases in muscular strength and serum hydroxyproline levels. J Int Soc Sports Nutr. 2019;16(1):1–9.

Article  Google Scholar 

Lin X, Patil S, Gao Y-G, Qian A. The bone extracellular matrix in bone formation and regeneration. Front Pharmacol. 2020;11:757.

Article  CAS  Google Scholar 

Kloskowski T, Szeliski K, Krzeszowiak K, Fekner Z, Kazimierski Ł, Jundziłł A, Drewa T, Pokrywczyńska M. Mumio (Shilajit) as a potential chemotherapeutic for the urinary bladder cancer treatment. Sci Rep. 2021;11(1):1–12.

Article  Google Scholar 

Albaugh VL, Mukherjee K, Barbul A. Proline precursors and collagen synthesis: biochemical challenges of nutrient supplementation and wound healing. J Nutr. 2017;147(11):2011–7.

Article  CAS  Google Scholar 

Alshubaily FA, Jambi EJ. Correlation between antioxidant and anti-osteoporotic activities of Shilajit loaded into chitosan nanoparticles and their effects on osteoporosis in rats. Polymers. 2022;14(19):3972.

Article  CAS  Google Scholar 

Domazetovic V, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT. Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab. 2017;14(2):209.

Article  Google Scholar 

Nicolin V, De Tommasi N, Nori SL, Costantinides F, Berton F, Di Lenarda R. Modulatory effects of plant polyphenols on bone remodeling: a prospective view from the bench to bedside. Front Endocrinol. 2019;23:10:494.

Saito W, Uchida K, Matsushita O, Inoue G, Sekiguchi H, Aikawa J, Fujimaki H, Takaso M. Acceleration of callus formation during fracture healing using basic fibroblast growth factor-kidney disease domain-collagen-binding domain fusion protein combined with allogenic demineralized bone powder. J Orthop Surg Res. 2015;10(1):1–6.

Article  Google Scholar 

Witzler M, Büchner D, Shoushrah SH, Babczyk P, Baranova J, Witzleben S, Tobiasch E, Schulze M. Polysaccharide-based systems for targeted stem cell differentiation and bone regeneration. Biomolecules. 2019;9(12):840.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif