Tuberculous Meningitis: an Update on the Pathogenesis and Neuroimmunology

CDCTB. World TB Day History. Centers for Disease Control and Prevention. 2023. https://www.cdc.gov/tb/worldtbday/history.htm.

Tuberculosis (TB). https://www.who.int/news-room/fact-sheets/detail/tuberculosis.

Baykan AH, et al. Extrapulmonary tuberculosıs: an old but resurgent problem. Insights Imaging. 2022;13:39.

PubMed  PubMed Central  Google Scholar 

BCG. https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/vaccines-quality/bcg.

Kurihara M, et al. The challenge of differentiating tuberculous meningitis from bacterial meningitis. Respirol Case Rep. 2022;10(3):e0910. https://doi.org/10.1002/rcr2.910.

Mezochow A, Thakur K, Vinnard C. Tuberculous meningitis in children and adults: New insights for an ancient foe. Curr Neurol Neurosci Rep. 2017;17(11):85. https://doi.org/10.1007/s11910-017-0796-0. This review gives a useful overview of TBM including diagnostics and treatment up to ~2016.

Article  PubMed  PubMed Central  Google Scholar 

Sharma S, et al. Cytokines do play a role in pathogenesis of tuberculous meningitis: a prospective study from a tertiary care center in India. J Neurol Sci. 2017;379:131–6.

CAS  PubMed  Google Scholar 

Soria J, Metcalf T, Mori N, Newby RE, Montano SM, Huaroto L, Ticona E, Zunt JR. Mortality in hospitalized patients with tuberculous meningitis. BMC Infect Dis. 2019;19(1):9. https://doi.org/10.1186/s12879-018-3633-4. Retrospective Peruvian TBM patient data is used in this publication. These data emphasize the importance of early HIV diagnosis in patients with suspected TBM.

Article  PubMed  PubMed Central  Google Scholar 

Soria J, Chiappe A, Gallardo J, Zunt JR, Lescano AG. Tuberculous meningitis: impact of timing of treatment initiation on mortality. Open Forum Infect Dis. 2021;8:345.

Google Scholar 

Chin JH. Tuberculous meningitis: Diagnostic and therapeutic challenges. Neurol Clin Pract. 2014;4(3):199–205. https://doi.org/10.1212/CPJ.0000000000000023. This brief review has good descriptions about TBM diagnostic challenges.

Article  PubMed  PubMed Central  Google Scholar 

Ssebambulidde K, Gakuru J, Ellis J, Cresswell FV, Bahr NC. Improving technology to diagnose tuberculous meningitis: Are we there yet? Front Neurol. 2022;30(13):892224. https://doi.org/10.3389/fneur.2022.892224. TBM diagnostic methods are captured elegantly in this very useful review. Detailed overviews of novel diagnostic technologies for TBM are also presented.

Article  Google Scholar 

Cresswell FV, et al. Tuberculous meningitis international research consortium. Recent developments in tuberculous meningitis pathogenesis and diagnostics. Wellcome Open Res. 2021;4:164. https://doi.org/10.12688/wellcomeopenres.15506.3. This is an excellent up-to-date review focused on TBM pathogenesis. Novel diagnostic technologies are also discussed.

Arshad A, et al. Analysis of Tuberculosis Meningitis Pathogenesis, Diagnosis, and Treatment. J Clin Med. 2020;9(9):2962. https://doi.org/10.3390/jcm9092962. This review describes immune responses, pathogenesis, diagnosis and treatment of TBM. Table 1 in this review is a useful article list with descriptive summaries.

Manyelo CM, Solomons RS, Walzl G, Chegou NN. Tuberculous meningitis: pathogenesis, immune responses, diagnostic challenges, and the potential of biomarker-based approaches. J Clin Microbiol. 2021;59:e01771-e1820.

CAS  PubMed  PubMed Central  Google Scholar 

Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The glymphatic system: a beginner’s guide. Neurochem Res. 2015;40:2583–99.

CAS  PubMed  PubMed Central  Google Scholar 

Ben-Shaanan TL, et al. Modulation of anti-tumor immunity by the brain’s reward system. Nat Commun. 2018;9:2723.

PubMed  PubMed Central  Google Scholar 

Caldwell LJ, Subramaniam S, MacKenzie G, Shah DK. Maximising the potential of neuroimmunology. Brain Behav Immun. 2020;87:189–92.

PubMed  PubMed Central  Google Scholar 

Morimoto K, Nakajima K. Role of the immune system in the development of the central nervous system. Front Neurosci. 2019;13:916.

PubMed  PubMed Central  Google Scholar 

Lee SH. Tuberculosis Infection and Latent Tuberculosis. Tuberc Respir Dis (Seoul). 2016;79(4):201–6. https://doi.org/10.4046/trd.2016.79.4.201. This review discusses factors that influence the transition from latent TB to active TB and emphasizes the importance of generating more latent TB treatments in groups defined in the paper to reduce overall TB burden.

Article  PubMed  Google Scholar 

Domingo-Gonzalez R, Prince O, Cooper A, Khader SA. Cytokines and Chemokines in Mycobacterium tuberculosis Infection. Microbiol Spectr. 2016;4(5). https://doi.org/10.1128/microbiolspec.TBTB2-0018-2016.

Arranz-Trullén J, Lu L, Pulido D, Bhakta S, Boix E. Host antimicrobial peptides: the promise of new treatment strategies against tuberculosis. Front Immunol. 2017;8:1499.

PubMed  PubMed Central  Google Scholar 

Queval CJ, et al. Mycobacterium tuberculosis controls phagosomal acidification by targeting CISH-mediated signaling. Cell Rep. 2017;20:3188–98.

CAS  PubMed  PubMed Central  Google Scholar 

Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol. 2012;12:352–66.

CAS  PubMed  Google Scholar 

Pagán AJ, Ramakrishnan L. The Formation and Function of Granulomas. Annu Rev Immunol. 2018;26(36):639–65. https://doi.org/10.1146/annurev-immunol-032712-100022. This review does a great job defining granuloma formation and function.

Article  CAS  Google Scholar 

Sugawara I, Yamada H, Mizuno S. Relative importance of STAT4 in murine tuberculosis. J Med Microbiol. 2003;52:29–34.

CAS  PubMed  Google Scholar 

Flynn JL, et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity. 1995;2(6):561–72. https://doi.org/10.1016/1074-7613(95)90001-2.

Balcewicz-Sablinska MK, Keane J, Kornfeld H, Remold HG. Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-alpha. J Immunol Baltim Md. 1998;1950(161):2636–41.

Google Scholar 

Jain SK, Tobin DM, Tucker EW, Venketaraman V, Ordonez AA, Jayashankar L, Siddiqi OK, Hammoud DA, Prasadarao NV, Sandor M, Hafner R, Fabry Z. NIH Tuberculous Meningitis Writing Group. Tuberculous meningitis: a roadmap for advancing basic and translational research. Nat Immunol. 2018;19(6):521–5. https://doi.org/10.1038/s41590-018-0119-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ar R. The pathogenesis of tuberculous meningitis. Bull John Hopkins Hosp. 1933;52:5.

Google Scholar 

Leonard JM. Central nervous system tuberculosis. Microbiol Spectr. 2017;5(2). https://doi.org/10.1128/microbiolspec. A good review with detailed descriptions of the tuberculoma.

Zaharie S-D, et al. The immunological architecture of granulomatous inflammation in central nervous system tuberculosis. Tuberculosis. 2020;125:102016.

CAS  PubMed  Google Scholar 

Tripathi S, et al. Glial alterations in tuberculous and cryptococcal meningitis and their relation to HIV co-infection – a study on human brains. J Infect Dev Ctries. 2014;8:1421–43.

PubMed  Google Scholar 

Perez-Malagon CD, Barrera-Rodriguez R, Lopez-Gonzalez MA, Alva-Lopez LF. Diagnostic and neurological overview of brain tuberculomas: a review of literature. Cureus. 2021. https://doi.org/10.7759/cureus.20133.

Article  PubMed  PubMed Central  Google Scholar 

Anuradha HK, et al. Intracranial tuberculomas in patients with tuberculous meningitis: predictors and prognostic significance. Int J Tuberc Lung Dis. 2011;15(2):234–9.

Spanos JP, Hsu NJ, Jacobs M. Microglia are crucial regulators of neuro-immunity during central nervous system tuberculosis. Front Cell Neurosci. 2015;9:182. https://doi.org/10.3389/fncel.2015.00182.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tan W, et al. Distinct phases of adult microglia proliferation: a Myc-mediated early phase and a Tnfaip3-mediated late phase. Cell Discov. 2022;8:1–18.

Google Scholar 

Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18:225–42.

CAS  PubMed  Google Scholar 

Verhoeven D. Immunometabolism and innate immunity in the context of immunological maturation and respiratory pathogens in young children. J Leukoc Biol. 2019;106:301–8.

CAS  PubMed  Google Scholar 

Mylonas A, O’Loghlen A. cellular senescence and ageing: mechanisms and interventions. Front Aging. 2022;3:866718.

PubMed  PubMed Central  Google Scholar 

Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest. 2013;123:958–65.

CAS  PubMed  PubMed Central  Google Scholar 

Lee J, Kim H-J. Normal aging induces changes in the brain and neurodegeneration progress: review of the structural, biochemical, metabolic, cellular, and molecular changes. Front Aging Neurosci. 2022;14:931536.

CAS  PubMed  PubMed Central  Google Scholar 

Malaeb S, Cohen S, Virgintino D, Stonestreet B. Core Concepts: Development of the Blood-Brain Barrier. NeoReviews. 2012;13:e241–50. https://doi.org/10.1542/neo.13-4-e241.

Article  Google Scholar 

Knox EG, Aburto MR, Clarke G, Cryan JF, O’Driscoll CM. The blood-brain barrier in aging and neurodegeneration. Mol Psychiatry. 2022;27(6):2659–73. https://doi.org/10.1038/s41380-022-01511-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ducomble T, et al. The burden of extrapulmonary and meningitis tuberculosis: an investigation of national surveillance data, Germany, 2002 to 2009. Euro Surveill. 2013;18(12):20436.

Ngwa C, et al. Age and sex differences in primary microglia culture: a comparative study. J Neurosci Methods. 2021;364:109359.

PubMed  PubMed Central  Google Scholar 

Nikodemova M, Small AL, Kimyon RS, Watters JJ. Age-dependent differences in microglial responses to systemic inflammation are evident as early as middle age. Physiol Genomics. 2016;48:336–44.

CAS  PubMed  PubMed Central  Google Scholar 

Letiembre M, et al. Innate immune receptor expression in normal brain aging. Neuroscience. 2007;146:248–54.

CAS  PubMed  Google Scholar 

Xie Z, et al. By Regulating the NLRP3 inflammasome can reduce the release of inflammatory factors in the co-culture model of tuberculosis H37Ra strain and rat microglia. Front Cell Infect Microbiol. 2021;11:637769.

CAS  PubMed  PubMed Central  Google Scholar 

Yang CS, et al. Reactive oxygen species and p47phox activation are essential for the Mycobacterium tuberculosis-induced pro-inflammatory response in murine microglia. J Neuroinflammation. 2007;4:27. https://doi.org/10.1186/1742-2094-4-27. This study reveals intracellular signaling involved in the pro-inflammatory response by Mtb-challenged microglia in vitro.

Curto M, et al. Inhibition of cytokines expression in human microglia infected by virulent and non-virulent mycobacteria. Neurochem Int. 2004;44:381–92.

CAS 

留言 (0)

沒有登入
gif