Effects of riboflavin deficiency and high dietary fat on hepatic lipid accumulation: a synergetic action in the development of non-alcoholic fatty liver disease

Tarantino G, Citro V, Capone D. Nonalcoholic fatty liver disease: a challenge from mechanisms to therapy. J Clin Med. 2020;9:15.

Article  CAS  Google Scholar 

Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, Swain MG, Congly SE, Kaplan GG, Shaheen A. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol. 2022;7:851–61.

Google Scholar 

Younossi ZM, Blissett D, Blissett R, Henry L, Stepanova M, Younossi Y, Racila A, Hunt S, Beckerman R. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. 2016;64:1577–86.

Article  PubMed  Google Scholar 

Day CP, James OF. Steatohepatitis: A tale of two “hits”? Gastroenterology. 1998;114:842–5.

Article  CAS  PubMed  Google Scholar 

Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65:1038–48.

Article  CAS  PubMed  Google Scholar 

Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature (London). 1990;347:645–50.

Article  CAS  PubMed  Google Scholar 

Jia X, Zhai T. Integrated analysis of multiple microarray studies to identify novel gene signatures in non-alcoholic fatty liver disease. Front Endocrinol (Lausanne). 2019;10:599.

Article  PubMed  Google Scholar 

Gavrilova O, Haluzik M, Matsusue K, Cutson JJ, Johnson L, Dietz KR, Nicol CJ, Vinson C, Gonzalez FJ, Reitman ML. Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem. 2003;278:34268–76.

Article  CAS  PubMed  Google Scholar 

Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARγ. Annu Rev Biochem. 2008;77:289–312.

Article  CAS  PubMed  Google Scholar 

Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med. 2013;19:557–66.

Article  CAS  PubMed  Google Scholar 

Simpson SJEA. The nutritional geometry of liver disease including non-alcoholic fatty liver disease (NAFLD). J Hepatol. 2018;68:316–25.

Article  PubMed  Google Scholar 

Mirizzi A, Franco I, Leone CM, Bonfiglio C, Cozzolongo R, Notarnicola M, Giannuzzi V, Tutino V, De Nunzio V, Bruno I, Buongiorno C, Campanella A, Deflorio V, Pascale A, Procino F, Sorino P, Osella AR. Effects of some food components on non-alcoholic fatty liver disease severity: results from a cross-sectional study. Nutrients. 2019;11:2744.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saeed N, Nadeau B, Shannon C, Tincopa M. Evaluation of dietary approaches for the treatment of non-alcoholic fatty liver disease: a systematic review. Nutrients. 2019;11:3064.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zelber-Sagi S, Ivancovsky-Wajcman D, Fliss Isakov N, Webb M, Orenstein D, Shibolet O, Kariv R. High red and processed meat consumption is associated with non-alcoholic fatty liver disease and insulin resistance. J Hepatol. 2018;68:1239–46.

Article  CAS  PubMed  Google Scholar 

Tsuchiya H, Ebata Y, Sakabe T, Hama S, Kogure K, Shiota G. High-fat, high-fructose diet induces hepatic iron overload via a hepcidin-independent mechanism prior to the onset of liver steatosis and insulin resistance in mice. Metabolism. 2013;62:62–9.

Article  CAS  PubMed  Google Scholar 

Rahman K, Desai C, Iyer SS, Thorn NE, Kumar P, Liu Y, Smith T, Neish AS, Li H, Tan S, Wu P, Liu X, Yu Y, Farris AB, Nusrat A, Parkos CA, Anania FA. Loss of junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology (New York, NY 1943). 2016;151:733–46.

CAS  Google Scholar 

Pinto JT, Zempleni J. Riboflavin. Adv Nutr. 2016;7:973–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Federico A, Dallio M, Caprio G, Gravina A, Picascia D, Masarone M, Persico M, Loguercio C. Qualitative and quantitative evaluation of dietary intake in patients with non-alcoholic steatohepatitis. Nutrients. 2017;9:1074.

Article  PubMed  PubMed Central  Google Scholar 

Bian X, Gao W, Wang Y, Yao Z, Xu Q, Guo C, Li B. Riboflavin deficiency affects lipid metabolism partly by reducing apolipoprotein B100 synthesis in rats. J Nutr Biochem. 2019;70:75–81.

Article  CAS  PubMed  Google Scholar 

Xin Z, Pu L, Gao W, Wang Y, Wei J, Shi T, Yao Z, Guo C. Riboflavin deficiency induces a significant change in proteomic profiles in HepG2 cells. Sci Rep. 2017;7:45861.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joshi-Barve S, Barve SS, Amancherla K, Gobejishvili L, Hill D, Cave M, Hote P, McClain CJ. Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology. 2007;46:823–30.

Article  CAS  PubMed  Google Scholar 

Nanji AA. Animal models of nonalcoholic fatty liver disease and steatohepatitis. Clin Liver Dis. 2004;8:559–74.

Article  PubMed  Google Scholar 

Lucas A, Bates C. Transient riboflavin depletion in preterm infants. Arch Dis Child. 1984;59:837–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCabe H. Riboflavin deficiency in cystic fibrosis: three case reports. J Hum Nutr Diet. 2001;14:365–70.

Article  CAS  PubMed  Google Scholar 

Manthey KC, Rodriguez-Melendez R, Hoi JT, Zempleni J. Riboflavin deficiency causes protein and DNA damage in HepG2 cells, triggering arrest in G1 phase of the cell cycle. J Nutr Biochem. 2006;17:250–6.

Article  CAS  PubMed  Google Scholar 

Manthey KC, Chew YC, Zempleni J. Riboflavin deficiency impairs oxidative folding and secretion of apolipoprotein B-100 in HepG2 cells, triggering stress response systems. J Nutr. 2005;135:978–82.

Article  CAS  PubMed  Google Scholar 

Brunt EM, Kleiner DE, Wilson LA, Belt P, Neuschwander-Tetri BA. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology. 2011;53:810–20.

Article  CAS  PubMed  Google Scholar 

Sun Y, Xia M, Yan H, Han Y, Zhang F, Hu Z, Cui A, Ma F, Liu Z, Gong Q, Chen X, Gao J, Bian H, Tan Y, Li Y, Gao X. Berberine attenuates hepatic steatosis and enhances energy expenditure in mice by inducing autophagy and fibroblast growth factor 21. Br J Pharmacol. 2018;175:374–87.

Article  CAS  PubMed  Google Scholar 

Hu Y, He W, Huang Y, Xiang H, Guo J, Che Y, Cheng X, Hu F, Hu M, Ma T, Yu J, Tian H, Tian S, Ji YX, Zhang P, She ZG, Zhang XJ, Huang Z, Yang J, Li H. Fatty acid synthase-suppressor screening identifies sorting nexin 8 as a therapeutic target for NAFLD. Hepatology. 2021;74:2508–25.

Article  CAS  PubMed  Google Scholar 

Jha P, Claudel T, Baghdasaryan A, Mueller M, Halilbasic E, Das SK, Lass A, Zimmermann R, Zechner R, Hoefler G, Trauner M. Role of adipose triglyceride lipase (PNPLA2) in protection from hepatic inflammation in mouse models of steatohepatitis and endotoxemia. Hepatology. 2014;59:858–69.

Article  CAS  PubMed  Google Scholar 

Schlaepfer IR, Joshi M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology. 2020;161:bqz046.

Article  PubMed  Google Scholar 

Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;21:1915–28.

Article  Google Scholar 

Lai Y, Li M, Liao X, Zou L. Smartphone-assisted colorimetric detection of glutathione and glutathione reductase activity in human serum and mouse liver using hemin/G-quadruplex DNAzyme. Molecules. 2021;26:5016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flohé L. Glutathione peroxidase. Basic Life Sci. 1988;49:663–8.

PubMed  Google Scholar 

Masuoka HC, Chalasani N. Nonalcoholic fatty liver disease: an emerging threat to obese and diabetic individuals. Ann N Y Acad Sci. 2013;1281:106–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tanaka S, Hikita H, Tatsumi T, Sakamori R, Nozaki Y, Sakane S, Shiode Y, Nakabori T, Saito Y, Hiramatsu N, Tabata K, Kawabata T, Hamasaki M, Eguchi H, Nagano H, Yoshimori T, Takehara T. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology. 2016;64:1994–2014.

Article  CAS  PubMed  Google Scholar 

Shi H, Prough RA, McClain CJ, Song M.

留言 (0)

沒有登入
gif