Formulation, Characterization, and Optimization of Transethosomes for Enhanced Transdermal Delivery of Methotrexate

Jeong WY, Kwon M, Choi HE, Kim KS. Recent advances in transdermal drug delivery systems: a review. Biomater Res. 2021. https://doi.org/10.1186/s40824-021-00226-6.

Article  PubMed  PubMed Central  Google Scholar 

Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008. https://doi.org/10.1038/nbt.1504.

Article  PubMed  PubMed Central  Google Scholar 

Prajapati ST, Patel CG, Patel CN. Formulation and evaluation of transdermal patch of repaglinide. ISRN Pharm. 2011;2011: 651909. https://doi.org/10.5402/2011/651909.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akhtar N, Singh V, Yusuf M, Khan RA. Non-invasive drug delivery technology: development and current status of transdermal drug delivery devices, techniques and biomedical applications. Biomed Tech. 2020;65:243–72. https://doi.org/10.1515/bmt-2019-0019.

Article  CAS  Google Scholar 

Tomoda K, Makino K. Nanoparticles for transdermal drug delivery system (TDDS). In: Ohshima H, Makino K editors: Colloid and interface science in pharmaceutical research and development. Elsevier BV. 2014;131–47. https://doi.org/10.1016/B978-0-444-62614-1.00007-7.

Cevc G, Vierl U. Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release. 2010. https://doi.org/10.1016/j.jconrel.2009.10.016.

Article  PubMed  Google Scholar 

Gondkar SB, Patil NR, Saudagar RB. Formulation development and characterization of drug loaded transethosomes for transdermal delivery: review article. Int J Chem Tech Res. 2017;10(6):534–44.

Google Scholar 

Honeywell-Nguyen PL, Bouwstra JA. Vesicles as a tool for transdermal and dermal delivery. Drug Discov Today Technol. 2005. https://doi.org/10.1016/j.ddtec.2005.05.003.

Article  PubMed  Google Scholar 

Bajaj KJ, Parab BS, Shidhaye SS. Nano-transethosomes: a novel tool for drug delivery through skin. Indian J Pharm Educ Res. 2021. https://doi.org/10.5530/ijper.55.1s.33.

Article  Google Scholar 

Kumar L, Verma S, Singh K, Prasad DN, Jain AK. Ethanol based vesicular carriers in transdermal drug delivery: nanoethosomes and transethosomes in focus. NanoWorld J. 2016; https://doi.org/10.17756/nwj.2016-030.

Chacko IA, Ghate VM, Dsouza L, Lewis SA. Lipid vesicles: a versatile drug delivery platform for dermal and transdermal applications. Colloids Surfaces B Biointerfaces. 2020. https://doi.org/10.1016/j.colsurfb.2020.111262.

Article  PubMed  Google Scholar 

Fang Q, Zhou C, Nandakumar KS. Review article molecular and cellular pathways contributing to joint damage in rheumatoid arthritis. Mediators Inflamm. 2020; https://doi.org/10.1155/2020/3830212

Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018. https://doi.org/10.1038/s41413-018-0016-9.

Article  PubMed  PubMed Central  Google Scholar 

Anita C, Munira M, Mural Q, Shaily L. Topical nanocarriers for management of rheumatoid arthritis: a review. Biomed Pharm. 2021. https://doi.org/10.1016/j.biopha.2021.111880.

Article  Google Scholar 

Venuturupalli S. Immune mechanisms and novel targets in rheumatoid arthritis. Immunol allergy Clin North America. 2017; https://doi.org/10.1016/j.iac.2017.01.002.

Padyukov L, Silva C, Stolt P, Alfredsson L, Klareskog L. A gene – environment interaction between smoking and shared epitope genes in HLA – DR provides a high risk of seropositive rheumatoid arthritis. Arthritis Rheum. 2004. https://doi.org/10.1002/art.20553.

Article  PubMed  Google Scholar 

Alfredsson L, Klareskog L, Padyukov L. Gene – environment interaction between the DRB1 shared epitope and smoking in the risk of anti – citrullinated protein antibody – positive rheumatoid arthritis all alleles are important. Arthritis Rheum. 2009. https://doi.org/10.1002/art.24572.

Article  PubMed  PubMed Central  Google Scholar 

Yap HY, Tee SZY, Wong MMT, Chow SK, Peh SC, Teow SY. Pathogenic role of immune cells in rheumatoid arthritis: implications in clinical treatment and biomarker development. Cells. 2018. https://doi.org/10.3390/cells7100161.

Article  PubMed  PubMed Central  Google Scholar 

Alunno A, Carubbi F, Giacomelli R, Gerli R. Cytokines in the pathogenesis of rheumatoid arthritis: new players and therapeutic targets. BMC Rheumatology. 2017. https://doi.org/10.1186/s41927-017-0001-8.

Article  PubMed  PubMed Central  Google Scholar 

Kay J, Calabrese L. The role of interleukin-1 in the pathogenesis of rheumatoid arthritis. Rheumatology. 2004. https://doi.org/10.1093/rheumatology/keh201.

Article  PubMed  Google Scholar 

Saxena A, Raychaudhuri SK, Raychaudhuri SP. Rheumatoid arthritis : disease pathophysiology. Inflamm Adv Age Nutr. 2014:215–29. https://doi.org/10.1016/B978-0-12-397803-5.00018-6.

Kumar V, Kanwar JR, Verma AK. Rheumatoid arthritis: basic pathophysiology and role of chitosan nanoparticles in therapy. Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents. 2020. https://doi.org/10.1016/b978-0-12-819666-3.00016-x.

Article  Google Scholar 

Chuang SY, Lin CH, Huang TH, Fang JY. Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials. 2018. https://doi.org/10.3390/nano8010042.

Article  PubMed  PubMed Central  Google Scholar 

Law ST, Taylor PC. Role of boilogical agents in treatment of rheumatoid arthritis. Pharmacol Res. 2019. https://doi.org/10.1016/j.phrs.2019.104497.

Article  PubMed  Google Scholar 

Janakiraman K, Krishnaswami V, Sethuraman V, Rajendran V, Kandasamy R. Development of methotrexate-loaded cubosomes with improved skin permeation for the topical treatment of rheumatoid arthritis. Appl Nanosci. 2019. https://doi.org/10.1007/s13204-019-00976-9.

Article  Google Scholar 

Jadhav P, Bothiraja C, Pawar A. Methotrexate-loaded nanomixed micelles: formulation, characterization, bioavailability, safety, and in vitro anticancer study. J Pharm Innov. 2018. https://doi.org/10.1007/s12247-018-9314-4.

Article  Google Scholar 

Bianchi G, Caporali R, Todoerti M, Mattana P. Methotrexate and rheumatoid arthritis: current evidence regarding subcutaneous versus oral routes of administration. Adv Ther. 2016. https://doi.org/10.1007/s12325-016-0295-8.

Article  PubMed  PubMed Central  Google Scholar 

Noack M, Miossec P. Effects of methotrexate alone or combined with arthritis-related biotherapies in an in vitro co-culture model with immune cells and synoviocytes. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.02992.

Article  PubMed  PubMed Central  Google Scholar 

Ghosh S, Mukherjee B, Chaudhuri S, Roy T, Mukherjee A, Sengupta S. Methotrexate aspasomes against rheumatoid arthritis: optimized hydrogel loaded liposomal formulation with in vivo evaluation in Wistar rats. AAPS PharmSciTech. 2018. https://doi.org/10.1208/s12249-017-0939-2.

Article  PubMed  Google Scholar 

Demirbolat GM, Aktas E, Coskun GP, Erdogan O, Cevik O. New approach to formulate methotrexate-loaded niosomes: in vitro characterization and cellular effectiveness. J Pharm Innov. 2021. https://doi.org/10.1007/s12247-021-09539-4.

Article  Google Scholar 

Gadad AP, Patil AS, Singh Y, Dandagi PM, Bolmal UB, Basu A. Development and evaluation of flurbiprofen loaded transethosomes to improve transdermal delivery. Indian J Pharm Educ Res. 2020. https://doi.org/10.5530/ijper.54.4.189.

Article  Google Scholar 

Albash R, Abdelbary AA, Refai H, El-Nabarawi MA. Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: in vitro, ex vivo, and in vivo evaluation. Int J Nanomed. 2019. https://doi.org/10.2147/IJN.S196771.

Article  Google Scholar 

Rajnani N, Kurup DNS. Method development of methotrexate in phosphate buffer solution by UV-visible spectroscopy. Int J Trend Sci Res Dev. 2018; https://doi.org/10.31142/ijtsrd14256.

Rahangdale M, Pandey P. Development and characterization of apremilast transethosomal gel for transdermal delivery. Int J Pharm Sci Nanotechnol. 2021; https://doi.org/10.37285/ijpsn.2021.14.3.8.

Agrawal M, Saraf S, Pradhan M, Patel RJ, Singhvi G, Ajazuddin, et al. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design. Biomed Pharmacother. 2021; https://doi.org/10.1016/j.biopha.2021.111919.

Gorle AP, Pawara IT, Achaliya AP. Design development and evaluation of transdermal drug delivery system of antipyretic agent. Int J Pharm Res Health Sci. 2017; https://doi.org/10.21276/ijprhs.2017.04.05.

Garg V, Singh H, Bhatia A, Raza K, Singh SK, Singh B, et al. Systematic development of transethosomal gel system of piroxicam: formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS PharmSciTech. 2017. https://doi.org/10.1208/s12249-016-0489-z.

Article  PubMed  Google Scholar 

Desai GN, Dandagi PM, Kazi TM. Nanosized intranasal delivery of novel self-assembled cubic liquid crystals: formulation and evaluation. J Pharm Innov. 2022. https://doi.org/10.1007/s12247-022-09695-1.

Article  Google Scholar 

El-Sonbaty MM, Akl MA, El-Say KM, Kassem AA. Does the technical methodology influence the quality attributes and the potential of skin permeation of luliconazole loaded transethosomes?. J Drug Deliv Sci Technol. 2022. https://doi.org/10.1016/j.jddst.2022.103096.

Article  Google Scholar 

Al-Mahallawi AM, Abdelbary AA, Aburahma MH. Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int J Pharm. 2015. https://doi.org/10.1016/j.ijpharm.2015.03.033.

Article  PubMed  Google Scholar 

Moolakkadath T, Aqil M, Ahad A, Imam SS, Iqbal B, Sultana Y, et al. Development of transethosomes formulation for dermal fisetin delivery: Box–Behnken design, optimization, in vitro skin penetration, vesicles–skin interaction and dermatokinetic studies. Artif CellsNanomed Biotechnol. 2018; https://doi.org/10.1080/21691401.2018.1469025.

Sudhakar K, Mishra V, Jain S, Rompicherla NC, Malviya N, Tambuwala MM. Development and evaluation of the effect of ethanol and surfactant in vesicular carriers on lamivudine permeation through the skin. Int J Pharm. 2021. https://doi.org/10.1016/j.ijpharm.2021.121226.

Article  PubMed  Google Scholar 

Kunieda H, Ohyama K ichi. Three-phase behavior and HLB numbers of bile salts and lecithin in a water-oil system. J Coll Interf Sci. 1990; https://doi.org/10.1016/0021-9797(90)90390-A.

Aboud HM, Ali AA, El-Menshawe SF, Elbary AA. Nanotransfersomes of carvedilol for intranasal delivery: formulation, characterization and in vivo evaluation. Drug Deliv. 2016. https://doi.org/10.3109/10717544.2015.1013587.

Article  PubMed  Google Scholar 

Jain S, Jain P, Umamaheshwari RB, Jain NK. Transfersomes - a novel vesicular carrier for enhanced transdermal delivery: development, characterization, and performance evaluation. Drug Dev Ind Pharm. 2003. https://doi.org/10.1081/DDC-120025458.

Article  PubMed  Google Scholar 

Mahmoud DB, ElMeshad AN, Fadel M, Tawfik A, Ramez SA. Photodynamic therapy fortified with topical oleyl alcohol-based transethosomal 8-methoxypsoralen for ameliorating vitiligo: Optimization and clinical study. Int J Pharm. 2022. https://doi.org/10.1016/j.ijpharm.2022.121459.

留言 (0)

沒有登入
gif