Towards Full Thickness Small Intestinal Models: Incorporation of Stromal Cells

Hornbuckle WE, Simpson KW, Tennant BC. Gastrointestinal function: clinical biochemistry of domestic animals. Elsevier; 2008. p. 413–57.

Book  Google Scholar 

Balimane PV, Chong S. Cell culture-based models for intestinal permeability: a critique. Drug Discov Today. 2005;10:335–43.

Article  CAS  PubMed  Google Scholar 

Pasztoi M, Ohnmacht C. Tissue niches formed by intestinal mesenchymal stromal cells in mucosal homeostasis and immunity. Int J Mol Sci. 2022;23:5181.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu QH, Yang Q. Diversity of tight junctions (TJs) between gastrointestinal epithelial cells and their function in maintaining the mucosal barrier. Cell Biol Int. 2009;33:78–82.

Article  PubMed  Google Scholar 

Owens B, Simmons A. Intestinal stromal cells in mucosal immunity and homeostasis. Mucosal Immunol. 2013;6:224–34.

Article  CAS  PubMed  Google Scholar 

Hoffmann JC, Pawlowski NN, Kühl AA, Höhne W, Zeitz M. Animal models of inflammatory bowel disease: an overview. Pathobiology. 2002;70:121–30.

Article  PubMed  Google Scholar 

Li N, Wang D, Sui Z, Qi X, Ji L, Wang X, et al. Development of an improved three-dimensional in vitro intestinal mucosa model for drug absorption evaluation. Tissue Eng Part C Methods. 2013;19:708–19.

Article  CAS  PubMed  Google Scholar 

Pereira C, Araújo F, Barrias CC, Granja PL, Sarmento B. Dissecting stromal-epithelial interactions in a 3D in vitro cellularized intestinal model for permeability studies. Biomaterials. 2015;56:36–45.

Article  CAS  PubMed  Google Scholar 

Ayehunie S, Landry T, Stevens Z, Armento A, Hayden P, Klausner M. Human primary cell-based organotypic microtissues for modeling small intestinal drug absorption. Pharm Res. 2018;35:1–18.

Article  CAS  Google Scholar 

Peters MF, Landry T, Pin C, Maratea K, Dick C, Wagoner MP, et al. Human 3D gastrointestinal microtissue barrier function as a predictor of drug-induced diarrhea. Toxicol Sci. 2019;168:3–17.

Article  CAS  PubMed  Google Scholar 

Darling NJ, Mobbs CL, González-Hau AL, Freer M, Przyborski S. Bioengineering novel in vitro co-culture models that represent the human intestinal mucosa with improved Caco-2 structure and barrier function. Front Bioeng Biotechnol. 2020;8:992.

Article  PubMed  PubMed Central  Google Scholar 

Macedo MH, Martínez E, Barrias CC, Sarmento B. Development of an improved 3D in vitro intestinal model to perform permeability studies of paracellular compounds. Front Bioeng Biotechnol. 2020;8:1076.

Article  Google Scholar 

Zhang J, Penny J, Lu JR. Development of a novel in vitro 3D intestinal model for permeability evaluations. Int J Food Sci Nutr. 2020;71:549–62.

Article  PubMed  Google Scholar 

Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ensari A, Marsh MN. Exploring the villus. GHFBB. 2018;11:181.

Google Scholar 

Miner JH, Li C, Mudd JL, Go G, Sutherland AE. Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development. 2004;131:2247–56.

Article  CAS  PubMed  Google Scholar 

Pöschl E, Schlötzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development. 2004;131:1619–28.

Article  PubMed  Google Scholar 

Powell D, Pinchuk I, Saada J, Chen X, Mifflin R. Mesenchymal cells of the intestinal lamina propria. Annu Rev Physiol. 2011;73:213.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roulis M, Flavell RA. Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation. 2016;92:116–31.

Article  CAS  PubMed  Google Scholar 

Boudry G, Yang P-C, Perdue MH. Small intestine. In: Johnson L, editor. Anatomy: encyclopedia of gastroenterology. New York: Elsevier; 2004. p. 404–9.

Chapter  Google Scholar 

Pender S, Lionetti P, Murch S, Wathan N, MacDonald T. Proteolytic degradation of intestinal mucosal extracellular matrix after lamina propria T cell activation. Gut. 1996;39:284–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim Y, Ko H, Kwon IK, Shin K. Extracellular matrix revisited: roles in tissue engineering. Int Neurourol J. 2016;20:S23.

Article  PubMed  PubMed Central  Google Scholar 

Stzepourginski I, Nigro G, Jacob J-M, Dulauroy S, Sansonetti PJ, Eberl G, et al. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury. Proc Natl Acad Sci. 2017;114:E506–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Göke M, Kanai M, Podolsky DK. Intestinal fibroblasts regulate intestinal epithelial cell proliferation via hepatocyte growth factor. Am J Physiol Gastrointest. 1998;274:G809–18.

Article  Google Scholar 

Desmoulière A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 2005;13:7–12.

Article  PubMed  Google Scholar 

Fan H, Wang A, Wang Y, Sun Y, Han J, Chen W, et al. Innate lymphoid cells: regulators of gut barrier function and immune homeostasis. J Immunol Res. 2019;2019:2525984.

Article  PubMed  PubMed Central  Google Scholar 

Dunn-Walters DK, Boursier L, Spencer J. Hypermutation, diversity and dissemination of human intestinal lamina propria plasma cells. Eur J Immunol. 1997;27:2959–64.

Article  CAS  PubMed  Google Scholar 

Befus AD, Dyck N, Goodacre R, Bienenstock J. Mast cells from the human intestinal lamina propria. Isolation, histochemical subtypes, and functional characterization. J Immunol. 1987;138:2604–10.

Article  CAS  PubMed  Google Scholar 

Vallon-Eberhard A, Landsman L, Yogev N, Verrier B, Jung S. Transepithelial pathogen uptake into the small intestinal lamina propria. J Immunol. 2006;176:2465–9.

Article  CAS  PubMed  Google Scholar 

Gelberg HB. Comparative anatomy, physiology, and mechanisms of disease production of the esophagus, stomach, and small intestine. Toxicol Pathol. 2014;42:54–66.

Article  CAS  PubMed  Google Scholar 

Kinchen J, Chen HH, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner-Corbett D, et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell. 2018;175:372–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pilling D, Fan T, Huang D, Kaul B, Gomer RH. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE. 2009;4:e7475.

Article  PubMed  PubMed Central  Google Scholar 

Thomson CA, Nibbs RJ, McCoy KD, Mowat AM. Immunological roles of intestinal mesenchymal cells. Immunology. 2020;160:313–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pinchuk I, Mifflin R, Saada J, Powell D. Intestinal mesenchymal cells. Curr Gastroenterol Rep. 2010;12:310–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pompili S, Latella G, Gaudio E, Sferra R, Vetuschi A. The charming world of the extracellular matrix: a dynamic and protective network of the intestinal wall. Front Med. 2021;8:610189.

Article  Google Scholar 

Karsdal M. Biochemistry of collagens, laminins and elastin: structure, function and biomarkers. Academic Press; 2019.

Google Scholar 

Zhang W, Ge Y, Cheng Q, Zhang Q, Fang L, Zheng J. Decorin is a pivotal effector in the extracellular matrix and tumour microenvironment. Oncotarget. 2018;9:5480.

Article  PubMed  PubMed Central  Google Scholar 

Dignass AU, Tsunekawa S, Podolsky DK. Fibroblast growth factors modulate intestinal epithelial cell growth and migration. Gastroenterology. 1994;106:1254–62.

Article  CAS  PubMed  Google Scholar 

Fibbe WE, Van Damme J, Billiau A, Duinkerken N, Lurvink E, Ralph P, et al. Human fibroblasts produce granulocyte-CSF, macrophage-CSF, and granulocyte-macrophage-CSF following stimulation by interleukin-1 and poly (rI). poly (rC). Blood. 1988;72:860–6.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif