Pathophysiology of ion channels in amyotrophic lateral sclerosis

Chiò A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, et al. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. NED. 2013;41(2):118–30.

Google Scholar 

Ingre C, Roos PM, Piehl F, Kamel F, Fang F. Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol. 2015;12(7):181–93.

Google Scholar 

Kumar DR, Aslinia F, Yale SH, Mazza JJ. Jean-Martin Charcot: the father of neurology. Clin Med Res. 2011;9(1):46–9.

Article  PubMed  PubMed Central  Google Scholar 

Taylor JP, Brown RH, Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016;539(7628):197–206.

Article  PubMed  PubMed Central  Google Scholar 

Martínez HR. Accelerate the diagnosis of amyotrophic lateral sclerosis using the Gold Coast criteria and biomarkers. RMN. 2023;24(3):10292.

Article  Google Scholar 

Gelon PA, Dutchak PA, Sephton CF. Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci. 2022. https://doi.org/10.3389/fnmol.2022.1000183.

Article  PubMed  PubMed Central  Google Scholar 

Sawada H. Clinical efficacy of edaravone for the treatment of amyotrophic lateral sclerosis. Expert Opin Pharmacother. 2017;18(7):735–8.

Article  CAS  PubMed  Google Scholar 

Fels JA, Dash J, Leslie K, Manfredi G, Kawamata H. Effects of PB-TURSO on the transcriptional and metabolic landscape of sporadic ALS fibroblasts. Ann Clin Transl Neurol. 2022;9(10):1551–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schuster JE, Fu R, Siddique T, Heckman CJ. Effect of prolonged riluzole exposure on cultured motoneurons in a mouse model of ALS. J Neurophysiol. 2011;107(1):484–92.

Article  PubMed  PubMed Central  Google Scholar 

van Roon-Mom W, Ferguson C, Aartsma-Rus A. From failure to meet the clinical endpoint to U.S. Food and Drug Administration Approval: 15th Antisense Oligonucleotide Therapy Approved Qalsody (Tofersen) for treatment of SOD1 mutated amyotrophic lateral sclerosis. Nucleic Acid Therapeut. 2023. https://doi.org/10.1089/nat.2023.0027.

Article  Google Scholar 

Foster LA, Salajegheh MK. Motor neuron disease: pathophysiology, diagnosis, and management. Am J Med. 2019;132(1):32–7.

Article  CAS  PubMed  Google Scholar 

Sturmey E, Malaspina A. Blood biomarkers in ALS: challenges, applications and novel frontiers. Acta Neurol Scand. 2022;146(4):375–88.

Article  PubMed  PubMed Central  Google Scholar 

Joilin G, Leigh PN, Newbury SF, Hafezparast M. An overview of MicroRNAs as Biomarkers of ALS. Front Neurol. 2019. https://doi.org/10.3389/fneur.2019.00186.

Article  PubMed  PubMed Central  Google Scholar 

Bozzoni V, Pansarasa O, Diamanti L, Nosari G, Cereda C, Ceroni M. Amyotrophic lateral sclerosis and environmental factors. Funct Neurol. 2016;31(1):7–19.

PubMed  PubMed Central  Google Scholar 

Newell ME, Adhikari S, Halden RU. Systematic and state-of the science review of the role of environmental factors in Amyotrophic Lateral Sclerosis (ALS) or Lou Gehrig’s Disease. Sci Total Environ. 2022;15(817): 152504.

Article  Google Scholar 

Chiò A, Benzi G, Dossena M, Mutani R, Mora G. Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain. 2005;128(Pt 3):472–6.

Article  PubMed  Google Scholar 

McKay KA, Smith KA, Smertinaite L, Fang F, Ingre C, Taube F. Military service and related risk factors for amyotrophic lateral sclerosis. Acta Neurol Scand. 2021;143(1):39–50.

Article  PubMed  Google Scholar 

Nguyen HP, Van Broeckhoven C, van der Zee J. ALS genes in the genomic era and their implications for FTD. Trends Genet. 2018;34(6):404–23.

Article  CAS  PubMed  Google Scholar 

Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron. 2013;79(3):416–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peters OM, Ghasemi M, Brown RH. Emerging mechanisms of molecular pathology in ALS. J Clin Invest. 2015;125(5):1767–79.

Article  PubMed  PubMed Central  Google Scholar 

Bozzo F, Mirra A, Carrì MT. Oxidative stress and mitochondrial damage in the pathogenesis of ALS: new perspectives. Neurosci Lett. 2017;1(636):3–8.

Article  Google Scholar 

Levy JR, Sumner CJ, Caviston JP, Tokito MK, Ranganathan S, Ligon LA, et al. A motor neuron disease-associated mutation in p150Glued perturbs dynactin function and induces protein aggregation. J Cell Biol. 2006;172(5):733–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ikenaka K, Katsuno M, Kawai K, Ishigaki S, Tanaka F, Sobue G. Disruption of axonal transport in motor neuron diseases. Int J Mol Sci. 2012;13(1):1225–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheroni C, Marino M, Tortarolo M, Veglianese P, De Biasi S, Fontana E, et al. Functional alterations of the ubiquitin-proteasome system in motor neurons of a mouse model of familial amyotrophic lateral sclerosis†. Hum Mol Genet. 2009;18(1):82–96.

Article  CAS  PubMed  Google Scholar 

Guber RD, Schindler AB, Budron MS, Lian CK, Li Y, Fischbeck KH, et al. Nucleocytoplasmic transport defect in a North American patient with ALS8. Ann Clin Transl Neurol. 2018;5(3):369–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jovičić A, Paul JW III, Gitler AD. Nuclear transport dysfunction: a common theme in amyotrophic lateral sclerosis and frontotemporal dementia. J Neurochem. 2016;138(S1):134–44.

Article  PubMed  Google Scholar 

Zanette G, Tamburin S, Manganotti P, Refatti N, Forgione A, Rizzuto N. Different mechanisms contribute to motor cortex hyperexcitability in amyotrophic lateral sclerosis. Clin Neurophysiol. 2002;113(11):1688–97.

Article  PubMed  Google Scholar 

Vucic S, Kiernan MC. Novel threshold tracking techniques suggest that cortical hyperexcitability is an early feature of motor neuron disease. Brain. 2006;129(9):2436–46.

Article  PubMed  Google Scholar 

Kiernan MC. Hyperexcitability, persistent Na+ conductances and neurodegeneration in amyotrophic lateral sclerosis. Exp Neurol. 2009;218(1):1–4.

Article  CAS  PubMed  Google Scholar 

Pieri M, Carunchio I, Curcio L, Mercuri NB, Zona C. Increased persistent sodium current determines cortical hyperexcitability in a genetic model of amyotrophic lateral sclerosis. Exp Neurol. 2009;215(2):368–79.

Article  CAS  PubMed  Google Scholar 

Vucic S, Kiernan MC. Axonal excitability properties in amyotrophic lateral sclerosis. Clin Neurophysiol. 2006;117(7):1458–66.

Article  PubMed  Google Scholar 

Vucic S, Nicholson G, Kiernan MC. Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. Brain. 2008;131:1540.

Article  PubMed  Google Scholar 

Vucic S, Kiernan MC. Cortical excitability testing distinguishes Kennedy’s disease from amyotrophic lateral sclerosis. Clin Neurophysiol. 2008;119(5):1088–96.

Article  PubMed  Google Scholar 

Kleine BU, Stegeman DF, Schelhaas HJ, Zwarts MJ. Firing pattern of fasciculations in ALS: evidence for axonal and neuronal origin. Neurology. 2008;70(5):353–9.

Article  PubMed  Google Scholar 

Heath PR, Shaw PJ. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve. 2002;26(4):438–58.

Article  CAS  PubMed  Google Scholar 

Ellis DZ, Rabe J, Sweadner KJ. Global Loss of Na, K-ATPase and its nitric oxide-mediated regulation in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci. 2003;23(1):43–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hand CK, Rouleau GA. Familial amyotrophic lateral sclerosis. Muscle Nerve. 2002;25(2):135–59.

Article  CAS  PubMed  Google Scholar 

Stifani N. Motor neurons and the generation of spinal motor neuron diversity. Front Cell Neurosci. 2014.

Burke RE, Levine DN, Tsairis P, Zajac FE III. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol. 1973;234(3):723–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuo JJ, Siddique T, Fu R, Heckman CJ. Increased persistent Na+ current and its effect on excitability in motoneurones cultured from mutant SOD1 mice. J Physiol. 2005;563(3):843–54.

Article  CAS 

留言 (0)

沒有登入
gif