Dupas T, Persello A, Blangy-Letheule A, Denis M, Erraud A, Aillerie V, et al. Beneficial effects of O-GlcNAc stimulation in a young rat model of sepsis: beyond modulation of gene expression. Int J Mol Sci. 2022;23:6430.
Article CAS PubMed PubMed Central Google Scholar
Yilmaz A, Grotewold E. Components and Mechanisms of Regulation of Gene Expression. In: Ladunga I, editor. Comput Biol Transcr Factor Bind [Internet]. Totowa, NJ: Humana Press; 2010 [cited 2023 Jul 17]. p. 23–32. Available from: http://link.springer.com/https://doi.org/10.1007/978-1-60761-854-6_2
Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23:781.
Article CAS PubMed PubMed Central Google Scholar
Breiling A, Lyko F. Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin. 2015;8:24.
Article PubMed PubMed Central Google Scholar
Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95.
Article CAS PubMed PubMed Central Google Scholar
Sakabe K, Wang Z, Hart GW. β-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci. 2010;107:19915–20.
Article CAS PubMed PubMed Central Google Scholar
Yang X, Qian K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol. 2017;18:452–65.
Article CAS PubMed PubMed Central Google Scholar
Brimble S, Wollaston-Hayden EE, Teo CF, Morris AC, Wells L. The Role of the O-GlcNAc modification in regulating eukaryotic gene expression. Curr Signal Transduct Ther. 2010;5:12–24.
Article CAS PubMed PubMed Central Google Scholar
Parker MP, Peterson KR, Slawson C. O-GlcNAcylation and O-GlcNAc cycling regulate gene transcription: emerging roles in cancer. Cancers. 2021;13:1666.
Article CAS PubMed PubMed Central Google Scholar
Shin H, Leung A, Costello KR, Senapati P, Kato H, Moore RE, et al. Inhibition of DNMT1 methyltransferase activity via glucose-regulated O-GlcNAcylation alters the epigenome. Isales C, Boulard M, editors. eLife. 2023;12:e85595.
Wang X, Rosikiewicz W, Sedkov Y, Martinez T, Hansen BS, Schreiner P, et al. PROSER1 mediates TET2 O-GlcNAcylation to regulate DNA demethylation on UTX-dependent enhancers and CpG islands. Life Sci Alliance. 2022;5. https://www.life-science-alliance.org/content/5/1/e202101228
Shi F-T, Kim H, Lu W, He Q, Liu D, Goodell MA, et al. Ten-Eleven translocation 1 (Tet1) is regulated by O-Linked N-Acetylglucosamine Transferase (Ogt) for Target Gene repression in mouse embryonic stem cells *. J Biol Chem. 2013;288:20776–84.
Article CAS PubMed PubMed Central Google Scholar
Decourcelle A, Leprince D, Dehennaut V. Regulation of polycomb repression by O-GlcNAcylation: linking nutrition to epigenetic reprogramming in embryonic development and cancer. Front Endocrinol. 2019;10:117.
Tan Z-W, Fei G, Paulo JA, Bellaousov S, Martin SES, Duveau DY, et al. O-GlcNAc regulates gene expression by controlling detained intron splicing. Nucleic Acids Res. 2020;48:5656–69.
Article CAS PubMed PubMed Central Google Scholar
Chen Y, Wan R, Zou Z, Lao L, Shao G, Zheng Y, et al. O-GlcNAcylation determines the translational regulation and phase separation of YTHDF proteins. Nat Cell Biol. 2023;25:1676–90.
Article CAS PubMed Google Scholar
Dupas T, Betus C, Blangy-Letheule A, Pelé T, Persello A, Denis M, et al. An overview of tools to decipher O-GlcNAcylation from historical approaches to new insights. Int J Biochem Cell Biol. 2022;151: 106289.
Article CAS PubMed Google Scholar
Wulff-Fuentes E, Berendt RR, Massman L, Danner L, Malard F, Vora J, et al. The human O-GlcNAcome database and meta-analysis. Sci Data. 2021;8:25.
Article CAS PubMed PubMed Central Google Scholar
Dehennaut V, Leprince D, Lefebvre T. O-GlcNAcylation, an epigenetic mark focus on the histone code, TET family proteins, and polycomb group proteins. Front Endocrinol. 2014. https://doi.org/10.3389/fendo.2014.00155/abstract.
Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.
Article CAS PubMed Google Scholar
Morrison O, Thakur J. Molecular complexes at euchromatin, heterochromatin and centromeric chromatin. Int J Mol Sci. 2021;22:6922.
Article CAS PubMed PubMed Central Google Scholar
Hahne H, Gholami AM, Kuster B. Discovery of O-GlcNAc-modified Proteins in published large-scale proteome data*. Mol Cell Proteomics. 2012;11:843–50.
Article CAS PubMed PubMed Central Google Scholar
Schouppe D, Ghesquière B, Menschaert G, De Vos WH, Bourque S, Trooskens G, et al. Interaction of the tobacco lectin with histone proteins. Plant Physiol. 2011;155:1091–102.
Article CAS PubMed PubMed Central Google Scholar
Hirosawa M, Hayakawa K, Yoneda C, Arai D, Shiota H, Suzuki T, et al. Novel O-GlcNAcylation on Ser40 of canonical H2A isoforms specific to viviparity. Sci Rep. 2016;6:31785.
Article CAS PubMed PubMed Central Google Scholar
Cavalieri V, Kathrein KL. Editorial: zebrafish epigenetics. Front Cell Dev Biol. 2022. https://doi.org/10.3389/fcell.2022.977398.
Article PubMed PubMed Central Google Scholar
Hayakawa K, Hirosawa M, Tani R, Yoneda C, Tanaka S, Shiota K. H2A O-GlcNAcylation at serine 40 functions genomic protection in association with acetylated H2AZ or γH2AX. Epigenetics Chromatin. 2017;10:51.
Article PubMed PubMed Central Google Scholar
Chen Q, Yu X. OGT restrains the expansion of DNA damage signaling. Nucleic Acids Res. 2016;44:9266–78.
CAS PubMed PubMed Central Google Scholar
Fujiki R, Hashiba W, Sekine H, Yokoyama A, Chikanishi T, Ito S, et al. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature. 2011;480:557–60.
Article CAS PubMed PubMed Central Google Scholar
Chen Q, Chen Y, Bian C, Fujiki R, Yu X. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature. 2013;493:561–4.
Article CAS PubMed Google Scholar
Xu B, Zhang C, Jiang A, Zhang X, Liang F, Wang X, et al. Histone methyltransferase Dot1L recruits O-GlcNAc transferase to target chromatin sites to regulate histone O-GlcNAcylation. J Biol Chem. 2022;298:102115.
Article CAS PubMed PubMed Central Google Scholar
Wang P, Peng C, Liu X, Liu H, Chen Y, Zheng L, et al. OGT mediated histone H2B S112 GlcNAcylation regulates DNA damage response. J Genet Genomics. 2015;42:467–75.
Article CAS PubMed Google Scholar
Zhang S, Roche K, Nasheuer H-P, Lowndes NF. Modification of histones by sugar β-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J Biol Chem. 2011;286:37483–95.
Article CAS PubMed PubMed Central Google Scholar
Fong JJ, Nguyen BL, Bridger R, Medrano EE, Wells L, Pan S, et al. β-N-Acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3. J Biol Chem. 2012;287:12195–203.
Article CAS PubMed PubMed Central Google Scholar
Xu Q, Yang C, Du Y, Chen Y, Liu H, Deng M, et al. AMPK regulates histone H2B O-GlcNAcylation. Nucleic Acids Res. 2014;42:5594–604.
Article CAS PubMed PubMed Central Google Scholar
Deplus R, Delatte B, Schwinn MK, Defrance M, Méndez J, Murphy N, et al. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J. 2013;32:645–55.
Article CAS PubMed PubMed Central Google Scholar
Lercher L, Raj R, Patel NA, Price J, Mohammed S, Robinson CV, et al. Generation of a synthetic GlcNAcylated nucleosome reveals regulation of stability by H2A-Thr101 GlcNAcylation. Nat Commun. 2015;6:7978.
Article CAS PubMed Google Scholar
Musicki B, Kramer MF, Becker RE, Burnett AL. Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O -GlcNAc in diabetes-associated erectile dysfunction. Proc Natl Acad Sci. 2005;102:11870–5.
Article CAS PubMed PubMed Central Google Scholar
Dubois-Deruy E, Belliard A, Mulder P, Bouvet M, Smet-Nocca C, Janel S, et al. Interpla
留言 (0)