O-GlcNAcylation: the sweet side of epigenetics

Dupas T, Persello A, Blangy-Letheule A, Denis M, Erraud A, Aillerie V, et al. Beneficial effects of O-GlcNAc stimulation in a young rat model of sepsis: beyond modulation of gene expression. Int J Mol Sci. 2022;23:6430.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yilmaz A, Grotewold E. Components and Mechanisms of Regulation of Gene Expression. In: Ladunga I, editor. Comput Biol Transcr Factor Bind [Internet]. Totowa, NJ: Humana Press; 2010 [cited 2023 Jul 17]. p. 23–32. Available from: http://link.springer.com/https://doi.org/10.1007/978-1-60761-854-6_2

Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23:781.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Breiling A, Lyko F. Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin. 2015;8:24.

Article  PubMed  PubMed Central  Google Scholar 

Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakabe K, Wang Z, Hart GW. β-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci. 2010;107:19915–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang X, Qian K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol. 2017;18:452–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brimble S, Wollaston-Hayden EE, Teo CF, Morris AC, Wells L. The Role of the O-GlcNAc modification in regulating eukaryotic gene expression. Curr Signal Transduct Ther. 2010;5:12–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parker MP, Peterson KR, Slawson C. O-GlcNAcylation and O-GlcNAc cycling regulate gene transcription: emerging roles in cancer. Cancers. 2021;13:1666.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin H, Leung A, Costello KR, Senapati P, Kato H, Moore RE, et al. Inhibition of DNMT1 methyltransferase activity via glucose-regulated O-GlcNAcylation alters the epigenome. Isales C, Boulard M, editors. eLife. 2023;12:e85595.

Wang X, Rosikiewicz W, Sedkov Y, Martinez T, Hansen BS, Schreiner P, et al. PROSER1 mediates TET2 O-GlcNAcylation to regulate DNA demethylation on UTX-dependent enhancers and CpG islands. Life Sci Alliance. 2022;5. https://www.life-science-alliance.org/content/5/1/e202101228

Shi F-T, Kim H, Lu W, He Q, Liu D, Goodell MA, et al. Ten-Eleven translocation 1 (Tet1) is regulated by O-Linked N-Acetylglucosamine Transferase (Ogt) for Target Gene repression in mouse embryonic stem cells *. J Biol Chem. 2013;288:20776–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Decourcelle A, Leprince D, Dehennaut V. Regulation of polycomb repression by O-GlcNAcylation: linking nutrition to epigenetic reprogramming in embryonic development and cancer. Front Endocrinol. 2019;10:117.

Article  Google Scholar 

Tan Z-W, Fei G, Paulo JA, Bellaousov S, Martin SES, Duveau DY, et al. O-GlcNAc regulates gene expression by controlling detained intron splicing. Nucleic Acids Res. 2020;48:5656–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Wan R, Zou Z, Lao L, Shao G, Zheng Y, et al. O-GlcNAcylation determines the translational regulation and phase separation of YTHDF proteins. Nat Cell Biol. 2023;25:1676–90.

Article  CAS  PubMed  Google Scholar 

Dupas T, Betus C, Blangy-Letheule A, Pelé T, Persello A, Denis M, et al. An overview of tools to decipher O-GlcNAcylation from historical approaches to new insights. Int J Biochem Cell Biol. 2022;151: 106289.

Article  CAS  PubMed  Google Scholar 

Wulff-Fuentes E, Berendt RR, Massman L, Danner L, Malard F, Vora J, et al. The human O-GlcNAcome database and meta-analysis. Sci Data. 2021;8:25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dehennaut V, Leprince D, Lefebvre T. O-GlcNAcylation, an epigenetic mark focus on the histone code, TET family proteins, and polycomb group proteins. Front Endocrinol. 2014. https://doi.org/10.3389/fendo.2014.00155/abstract.

Article  Google Scholar 

Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.

Article  CAS  PubMed  Google Scholar 

Morrison O, Thakur J. Molecular complexes at euchromatin, heterochromatin and centromeric chromatin. Int J Mol Sci. 2021;22:6922.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hahne H, Gholami AM, Kuster B. Discovery of O-GlcNAc-modified Proteins in published large-scale proteome data*. Mol Cell Proteomics. 2012;11:843–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schouppe D, Ghesquière B, Menschaert G, De Vos WH, Bourque S, Trooskens G, et al. Interaction of the tobacco lectin with histone proteins. Plant Physiol. 2011;155:1091–102.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirosawa M, Hayakawa K, Yoneda C, Arai D, Shiota H, Suzuki T, et al. Novel O-GlcNAcylation on Ser40 of canonical H2A isoforms specific to viviparity. Sci Rep. 2016;6:31785.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cavalieri V, Kathrein KL. Editorial: zebrafish epigenetics. Front Cell Dev Biol. 2022. https://doi.org/10.3389/fcell.2022.977398.

Article  PubMed  PubMed Central  Google Scholar 

Hayakawa K, Hirosawa M, Tani R, Yoneda C, Tanaka S, Shiota K. H2A O-GlcNAcylation at serine 40 functions genomic protection in association with acetylated H2AZ or γH2AX. Epigenetics Chromatin. 2017;10:51.

Article  PubMed  PubMed Central  Google Scholar 

Chen Q, Yu X. OGT restrains the expansion of DNA damage signaling. Nucleic Acids Res. 2016;44:9266–78.

CAS  PubMed  PubMed Central  Google Scholar 

Fujiki R, Hashiba W, Sekine H, Yokoyama A, Chikanishi T, Ito S, et al. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature. 2011;480:557–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Q, Chen Y, Bian C, Fujiki R, Yu X. TET2 promotes histone O-GlcNAcylation during gene transcription. Nature. 2013;493:561–4.

Article  CAS  PubMed  Google Scholar 

Xu B, Zhang C, Jiang A, Zhang X, Liang F, Wang X, et al. Histone methyltransferase Dot1L recruits O-GlcNAc transferase to target chromatin sites to regulate histone O-GlcNAcylation. J Biol Chem. 2022;298:102115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang P, Peng C, Liu X, Liu H, Chen Y, Zheng L, et al. OGT mediated histone H2B S112 GlcNAcylation regulates DNA damage response. J Genet Genomics. 2015;42:467–75.

Article  CAS  PubMed  Google Scholar 

Zhang S, Roche K, Nasheuer H-P, Lowndes NF. Modification of histones by sugar β-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated. J Biol Chem. 2011;286:37483–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fong JJ, Nguyen BL, Bridger R, Medrano EE, Wells L, Pan S, et al. β-N-Acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3. J Biol Chem. 2012;287:12195–203.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu Q, Yang C, Du Y, Chen Y, Liu H, Deng M, et al. AMPK regulates histone H2B O-GlcNAcylation. Nucleic Acids Res. 2014;42:5594–604.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deplus R, Delatte B, Schwinn MK, Defrance M, Méndez J, Murphy N, et al. TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J. 2013;32:645–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lercher L, Raj R, Patel NA, Price J, Mohammed S, Robinson CV, et al. Generation of a synthetic GlcNAcylated nucleosome reveals regulation of stability by H2A-Thr101 GlcNAcylation. Nat Commun. 2015;6:7978.

Article  CAS  PubMed  Google Scholar 

Musicki B, Kramer MF, Becker RE, Burnett AL. Inactivation of phosphorylated endothelial nitric oxide synthase (Ser-1177) by O -GlcNAc in diabetes-associated erectile dysfunction. Proc Natl Acad Sci. 2005;102:11870–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubois-Deruy E, Belliard A, Mulder P, Bouvet M, Smet-Nocca C, Janel S, et al. Interpla

留言 (0)

沒有登入
gif