Bacteroides fragilis ubiquitin homologue drives intraspecies bacterial competition in the gut microbiome

Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Peterson, S. B., Bertolli, S. K. & Mougous, J. D. The central role of interbacterial antagonism in bacterial life. Curr. Biol. 30, R1203–r1214 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

García-Bayona, L. & Comstock, L. E. Bacterial antagonism in host-associated microbial communities. Science https://doi.org/10.1126/science.aat2456 (2018).

Wexler, A. G. & Goodman, A. L. An insider’s perspective: Bacteroides as a window into the microbiome. Nat. Microbiol. 2, 17026 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chatzidaki-Livanis, M. et al. Gut symbiont Bacteroides fragilis secretes a eukaryotic-like ubiquitin protein that mediates intraspecies antagonism. mBio https://doi.org/10.1128/mBio.01902-17 (2017).

Shumaker, A. M., Laclare McEneany, V., Coyne, M. J., Silver, P. A. & Comstock, L. E. Identification of a fifth antibacterial toxin produced by a single Bacteroides fragilis strain. J. Bacteriol. https://doi.org/10.1128/jb.00577-18 (2019).

McEneany, V. L., Coyne, M. J., Chatzidaki-Livanis, M. & Comstock, L. E. Acquisition of MACPF domain-encoding genes is the main contributor to LPS glycan diversity in gut Bacteroides species. ISME J. 12, 2919–2928 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roelofs, K. G., Coyne, M. J., Gentyala, R. R., Chatzidaki-Livanis, M. & Comstock, L. E. Bacteroidales secreted antimicrobial proteins target surface molecules necessary for gut colonization and mediate competition in vivo. mBio https://doi.org/10.1128/mBio.01055-16 (2016).

Chatzidaki-Livanis, M., Coyne, M. J. & Comstock, L. E. An antimicrobial protein of the gut symbiont Bacteroides fragilis with a MACPF domain of host immune proteins. Mol. Microbiol. 94, 1361–1374 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bao, Y. et al. A common pathway for activation of host-targeting and bacteria-targeting toxins in human intestinal bacteria. mBio 12, e0065621 (2021).

Article  PubMed  Google Scholar 

Evans, J. C. et al. A proteolytically activated antimicrobial toxin encoded on a mobile plasmid of Bacteroidales induces a protective response. Nat. Commun. 13, 4258 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matano, L. M., Coyne, M. J., García-Bayona, L. & Comstock, L. E. Bacteroidetocins target the essential outer membrane protein BamA of Bacteroidales symbionts and pathogens. mBio 12, e0228521 (2021).

Article  PubMed  Google Scholar 

Patrick, S. et al. A unique homologue of the eukaryotic protein-modifier ubiquitin present in the bacterium Bacteroides fragilis, a predominant resident of the human gastrointestinal tract. Microbiology 157, 3071–3078 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bitto, E. & McKay, D. B. Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Structure 10, 1489–1498 (2002).

Article  CAS  PubMed  Google Scholar 

Calabrese, A. N. et al. Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients. Nat. Commun. 11, 2155 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jakob, R. P. et al. Dimeric structure of the bacterial extracellular foldase PrsA. J. Biol. Chem. 290, 3278–3292 (2015).

Article  CAS  PubMed  Google Scholar 

Stull, F., Betton, J.-M. & Bardwell, J. C. A. Periplasmic chaperones and prolyl isomerases. EcoSal Plus https://doi.org/10.1128/ecosalplus.ESP-0005-2018 (2018).

Rouviere, P. E. & Gross, C. A. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev. 10, 3170–3182 (1996).

Article  CAS  PubMed  Google Scholar 

Xu, X., Wang, S., Hu, Y.-X. & McKay, D. B. The periplasmic bacterial molecular chaperone SurA adapts its structure to bind peptides in different conformations to assert a sequence preference for aromatic residues. J. Mol. Biol. 373, 367–381 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hyyrylainen, H.-L. et al. Penicillin-binding protein folding is dependent on the PrsA peptidyl-prolyl cis–trans isomerase in Bacillus subtilis. Mol. Microbiol. 77, 108–127 (2010).

Article  CAS  PubMed  Google Scholar 

Roch, M. et al. Thermosensitive PBP2a requires extracellular folding factors PrsA and HtrA1 for Staphylococcus aureus MRSA beta-lactam resistance. Commun. Biol. https://doi.org/10.1038/s42003-019-0667-0 (2019).

Walton, T. A. & Sousa, M. C. Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol. Cell 15, 367–374 (2004).

Article  CAS  PubMed  Google Scholar 

Scholz, C. et al. SlyD proteins from different species exhibit high prolyl isomerase and chaperone activities. Biochemistry 45, 20–33 (2006).

Article  CAS  PubMed  Google Scholar 

Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

Article  CAS  PubMed  Google Scholar 

Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

Article  CAS  PubMed  Google Scholar 

Elhenawy, W., Debelyy, M. O. & Feldman, M. F. Preferential packing of acidic glycosidases and proteases into Bacteroides outer membrane vesicles. mBio 5, e00909–e00914 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Atanaskovic, I. & Kleanthous, C. Tools and approaches for dissecting protein bacteriocin import in gram-negative bacteria. Front. Microbiol. 10, 646 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Unal, C. M. & Steinert, M. Microbial peptidyl-prolyl cis/trans isomerases (PPIases): virulence factors and potential alternative drug targets. Microbiol. Mol. Biol. Rev. 78, 544–571 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Scheuplein, N. J. et al. Targeting protein folding: a novel approach for the treatment of pathogenic bacteria. J. Med. Chem. 63, 13355–13388 (2020).

Article  CAS  PubMed  Google Scholar 

Bencivenga-Barry, N. A., Lim, B., Herrera, C. M., Trent, M. S. & Goodman, A. L. Genetic manipulation of wild human gut bacteroides. J. Bacteriol. https://doi.org/10.1128/jb.00544-19 (2020).

García-Bayona, L. & Comstock, L. E. Streamlined genetic manipulation of diverse bacteroides and parabacteroides isolates from the human gut microbiota. mBio https://doi.org/10.1128/mBio.01762-19 (2019).

Liu, D., Siguenza, N. E., Zarrinpar, A. & Ding, Y. Methods of DNA introduction for the engineering of commensal microbes. Eng. Microbiol. 2, 100048 (2022).

Article  CAS  Google Scholar 

Lim, B., Zimmermann, M., Barry, N. A. & Goodman, A. L. Engineered regulatory systems modulate gene expression of human commensals in the gut. Cell 169, 547–558.e515 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, K. et al. Functional characterization of Vip3Aa from Bacillus thuringiensis reveals the contributions of specific domains to its insecticidal activity. J. Biol. Chem. 299, 103000 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, K. et al. A strategy to enhance the insecticidal potency of Vip3Aa by introducing additional cleavage sites to increase its proteolytic activation efficiency. Eng. Microbiol. 3, 100083 (2023).

Article  CAS  Google Scholar 

Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution - from diffraction images to an initial model in minutes. Acta Crystallogr. D Struct. Biol. 62, 859–866 (2006).

Article  Google Scholar 

Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Struct. Biol. 60, 2126–2132 (2004).

Article  Google Scholar 

Camacho, C. et al. BLAST plus: architecture and applications. BMC Bioinform. https://doi.org/10.1186/1471-2105-10-421 (2009).

Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmid, F. X. Prolyl isomerase: enzymatic catalysis of slow protein folding reactions. Annu. Rev. Biophys. Biomol. Struct. 22, 123–143 (1993).

Article  CAS 

留言 (0)

沒有登入
gif