RPTOR mutation: a novel predictor of efficacious immunotherapy in melanoma

Li Z, Gao Y, Cao Y et al (2023) Extracellular RNA in Melanoma: advances, challenges, and opportunities. Front Cell Dev Biol 11:1141543. https://doi.org/10.3389/fcell.2023.1141543

Article  PubMed  PubMed Central  Google Scholar 

Hamid O, Cowey CL, Offner M, Faries M, Carvajal RD (2019) Efficacy, Safety, and tolerability of approved combination BRAF and MEK inhibitor regimens for BRAF-Mutant Melanoma. Cancers (Basel) 11(11):1642. https://doi.org/10.3390/cancers11111642

Article  PubMed  Google Scholar 

Wang J, Zheng X, Fu X et al (2023) A de novo dual-targeting supramolecular self-assembly peptide against pulmonary Metastasis of Melanoma. Theranostics 13(11):3844–3855. https://doi.org/10.7150/thno.83819

Article  PubMed  PubMed Central  Google Scholar 

Wozniak M, Czyz M (2023) lncRNAs-EZH2 interaction as promising therapeutic target in cutaneous Melanoma. Front Mol Biosci 10:1170026. https://doi.org/10.3389/fmolb.2023.1170026

Article  PubMed  PubMed Central  Google Scholar 

Stoff R, Asher N, Laks S et al (2023) Real world evidence of lenvatinib + anti PD-1 as an advanced line for metastatic Melanoma. Front Oncol 13:1180988. https://doi.org/10.3389/fonc.2023.1180988

Article  PubMed  PubMed Central  Google Scholar 

Knight A, Karapetyan L, Kirkwood JM (2023) Immunotherapy in Melanoma: recent advances and future directions. Cancers (Basel) 15(4). https://doi.org/10.3390/cancers15041106

Ozbay Kurt FG, Lasser S, Arkhypov I, Utikal J, Umansky V (2023) Enhancing immunotherapy response in Melanoma: myeloid-derived suppressor cells as a therapeutic target. J Clin Invest 133(13):e170762. https://doi.org/10.1172/jci170762

Article  PubMed  PubMed Central  Google Scholar 

Huang S (2020) mTOR Signaling in Metabolism and Cancer. Cells 9(10):2278. https://doi.org/10.3390/cells9102278

Article  PubMed  PubMed Central  Google Scholar 

Cheng L, Wang Y, Qiu L et al (2022) mTOR pathway gene mutations predict response to immune checkpoint inhibitors in multiple cancers. J Transl Med 20(1):247. https://doi.org/10.1186/s12967-022-03436-1

Article  PubMed  PubMed Central  Google Scholar 

Zhu Q, Qiao R, Di F et al (2022) Hypomethylation of RPTOR in peripheral blood is associated with very early-stage Lung cancer. Clin Chim Acta 537:173–180. https://doi.org/10.1016/j.cca.2022.10.014

Article  PubMed  Google Scholar 

You KS, Yi YW, Kwak SJ, Seong YS (2018) Inhibition of RPTOR overcomes resistance to EGFR inhibition in triple-negative Breast cancer cells. Int J Oncol 52(3):828–840. https://doi.org/10.3892/ijo.2018.4244

Article  PubMed  Google Scholar 

Wang T, Zhang WS, Wang ZX et al (2020) RAPTOR promotes Colorectal cancer proliferation by inducing mTORC1 and upregulating ribosome assembly factor URB1. Cancer Med 9(4):1529–1543. https://doi.org/10.1002/cam4.2810

Article  PubMed  Google Scholar 

Kang K, Xie F, Mao J, Bai Y, Wang X (2020) Significance of Tumor Mutation Burden in Immune Infiltration and Prognosis in Cutaneous Melanoma. Front Oncol 10:573141. https://doi.org/10.3389/fonc.2020.573141

Article  PubMed  PubMed Central  Google Scholar 

Li H, Zhang Q, Duan Q et al (2022) NOTCH4 mutation as predictive biomarker for immunotherapy benefits in NRAS wildtype Melanoma. Front Immunol 13:894110. https://doi.org/10.3389/fimmu.2022.894110

Article  PubMed  PubMed Central  Google Scholar 

Roh W, Chen PL, Reuben A et al (2017) Integrated molecular analysis of Tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med 9(379):eaah3560. https://doi.org/10.1126/scitranslmed.aah3560

Article  PubMed  PubMed Central  Google Scholar 

Riaz N, Havel JJ, Makarov V et al (2017) Tumor and Microenvironment Evolution during Immunotherapy with Nivolumab. Cell 171(4):934-949e916. https://doi.org/10.1016/j.cell.2017.09.028

Article  PubMed  PubMed Central  Google Scholar 

Liu D, Schilling B, Liu D et al (2019) Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic Melanoma. Nat Med 25(12):1916–1927. https://doi.org/10.1038/s41591-019-0654-5

Article  PubMed  PubMed Central  Google Scholar 

Hugo W, Zaretsky JM, Sun L et al (2016) Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic Melanoma. Cell 165(1):35–44. https://doi.org/10.1016/j.cell.2016.02.065

Article  PubMed  PubMed Central  Google Scholar 

Miao W, Li L, Wang Y (2018) A targeted Proteomic Approach for Heat Shock proteins reveals DNAJB4 as a suppressor for Melanoma Metastasis. Anal Chem 90(11):6835–6842. https://doi.org/10.1021/acs.analchem.8b00986

Article  PubMed  PubMed Central  Google Scholar 

Van Allen EM, Miao D, Schilling B et al (2015) Genomic correlates of response to CTLA-4 blockade in metastatic Melanoma. Science 350(6257):207–211. https://doi.org/10.1126/science.aad0095

Article  PubMed  PubMed Central  Google Scholar 

Samstein RM, Lee CH, Shoushtari AN et al (2019) Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 51(2):202–206. https://doi.org/10.1038/s41588-018-0312-8

Article  PubMed  PubMed Central  Google Scholar 

Goldman MJ, Craft B, Hastie M et al (2020) Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 38(6):675–678. https://doi.org/10.1038/s41587-020-0546-8

Article  PubMed  PubMed Central  Google Scholar 

Teng X Yang T, Yuan B et al (2023) Prognostic analysis of patients with Breast cancer based on Tumor mutational burden and DNA damage repair genes. Front Oncol 13(1177133). https://doi.org/10.3389/fonc.2023.1177133

Zhang G, Yuan J, Pan C et al (2023) Multi-omics analysis uncovers Tumor ecosystem dynamics during neoadjuvant toripalimab plus nab-paclitaxel and S-1 for esophageal squamous cell carcinoma: a single-center, open-label, single-arm phase 2 trial. EBioMedicine 90:104515. https://doi.org/10.1016/j.ebiom.2023.104515

Article  PubMed  PubMed Central  Google Scholar 

Wang Z, Wang C, Lin S, Yu X (2021) Effect of TTN mutations on Immune Microenvironment and Efficacy of Immunotherapy in Lung Adenocarcinoma patients. Front Oncol 11:725292. https://doi.org/10.3389/fonc.2021.725292

Article  PubMed  PubMed Central  Google Scholar 

Xu K, Liu Y, Luo H, Wang T (2023) Efferocytosis signatures as prognostic markers for revealing immune landscape and predicting immunotherapy response in hepatocellular carcinoma. Front Pharmacol 14:1218244. https://doi.org/10.3389/fphar.2023.1218244

Article  PubMed  PubMed Central  Google Scholar 

Danaher P, Warren S, Dennis L et al (2017) Gene expression markers of Tumor infiltrating leukocytes. J Immunother Cancer 5:18. https://doi.org/10.1186/s40425-017-0215-8

Article  PubMed  PubMed Central  Google Scholar 

Li Y, Yang Q, Liu Y et al (2023) POTEE mutation as a potential predictive biomarker for immune checkpoint inhibitors in lung adenocarcinoma. Invest New Drugs. https://doi.org/10.1007/s10637-023-01375-2

Article  PubMed  PubMed Central  Google Scholar 

Wu Y, Zhang B, Nong J et al (2023) Systematic pan-cancer analysis of the potential Tumor diagnosis and prognosis biomarker P4HA3. Front Genet 14:1045061. https://doi.org/10.3389/fgene.2023.1045061

Article  PubMed  PubMed Central  Google Scholar 

Wen FF, Li XY, Li YY et al (2020) Expression of Raptor and Rictor and their relationships with angiogenesis in Colorectal cancer. Neoplasma 67(3):501–508. https://doi.org/10.4149/neo_2020_190705N597

Article  PubMed  Google Scholar 

Kondo S, Hirakawa H, Ikegami T et al (2021) Raptor and rictor expression in patients with human papillomavirus-related oropharyngeal squamous cell carcinoma. BMC Cancer 21(1):87. https://doi.org/10.1186/s12885-021-07794-9

Article  PubMed  PubMed Central  Google Scholar 

Patterson A, Auslander N (2022) Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic Melanoma. Nat Commun 13(1):5151. https://doi.org/10.1038/s41467-022-32838-4

Article  PubMed  PubMed Central  Google Scholar 

Pan C, Tang H, Wang W et al (2022) An enhanced genetic mutation-based model for predicting the efficacy of immune checkpoint inhibitors in patients with Melanoma. Front Oncol 12(1077477). https://doi.org/10.3389/fonc.2022.1077477

Jardim DL, Goodman A, de Melo Gagliato D, Kurzrock R (2021) The challenges of Tumor Mutational Burden as an Immunotherapy Biomarker. Cancer Cell 39(2):154–173. https://doi.org/10.1016/j.ccell.2020.10.001

Article  PubMed  Google Scholar 

Zou XL, Li XB, Ke H et al (2021) Prognostic value of Neoantigen Load in Immune checkpoint inhibitor therapy for Cancer. Front Immunol 12:689076. https://doi.org/10.3389/fimmu.2021.689076

Article  PubMed  PubMed Central  Google Scholar 

Aguadé-Gorgorió (2020) G,Solé R. Tumour neoantigen heterogeneity thresholds provide a time window for combination immunotherapy. J R Soc Interface 17(171):20200736. https://doi.org/10.1098/rsif.2020.0736

Article  PubMed  PubMed Central  Google Scholar 

Kim KB, Soroceanu L, de Semir D et al (2021) Prevalence of homologous recombination pathway gene mutations in Melanoma: Rationale for a New targeted Therapeutic Approach. J Inv

留言 (0)

沒有登入
gif