Ananiadou, K., & Claro, M. (2009). 21st century skills and competences for new millennium learners in OECD countries (EDU Working paper no. 41). Organisation for Economic Cooperation and Development. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote¼EDU/WKP%282009%2920&doclanguage¼en
Barton, A. C., Tan, E., & Greenberg, D. (2016). The makerspace movement: Sites of possibilities for equitable opportunities to engage underrepresented youth in STEM. Teachers College Record, 119(X), 1–44. https://doi.org/10.1177/016146811711900608
Blackley, S., Sheffield, R., Maynard, N., Koul, R., & Walker, R. (2017). Makerspace and reflective practice: Advancing pre-service teachers in STEM education. Australian Journal of Teacher Education (Online), 42(3), 22–37. https://doi.org/10.14221/ajte.2017v42n3.2
Boutin, S. (1997) Vers l’apprentissage progressif d’un modèle et de stratégies en résolution de problèmes en mathématiques au primaire [master’s dissertation, Université Laval]. https://central.bac-lac.gc.ca/.item?id=mq25283&op=pdf&app=Library&oclc_number=1204223305
Bower, M., Stevenson, M., Falloon, G., Forbes, A., et Hatzigianni, M. (2018). Makerspaces in primary school settings—advancing 21st century and STEM capabilities using 3D design and 3D printing. Sydney, Australia: Macquarie University. https://primarymakers.files.wordpress.com/2019/06/makerspaces-in-primary-school-settings-full-report-2018v2.pdf
Brijlall, D. (2015). Exploring the stages of Pólya’s problem-solving model during collaborative learning: A case of fractions. International Journal of Educational Sciences, 11(3), 291-299. https://doi.org/10.1080/09751122.2015.11890401
Charmaz, K. (1996). The search for Meanings–Grounded Theory. In Smith JA, Harre R. & Van Langenhove L.(eds.), Rethinking Methods in Psychology (p. 27–49).
Cook, K. L., & Bush, S. B. (2018). Design thinking in integrated STEAM learning: Surveying the landscape and exploring exemplars in elementary grades. School Science and Mathematics, 118(3-4), 93-103. https://doi.org/10.1111/ssm.12268
Cross, A. (2017). Tinkering in k-12: an exploratory mixed methods study of makerspaces in schools as an application of constructivist learning (publication no 10265494) [doctoral thesis, Pepperdine University]. ProQuest Dissertations and Theses Global.
European Union. (2015). Horizon 2020 work programme 2014–2015. http://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/main/h2020-wp1415-leit-ict_v1.0_en.pdf
Falloon, G., Forbes, A., Stevenson, M., Bower, M., et Hatzigianni, M. (2020). STEM in the making? Investigating STEM learning in junior school makerspaces. Research in Science Education, 1–27. https://doi.org/10.1007/s11165-020-09949-3
Forbes, A., Falloon, G., Stevenson, M., Hatzigianni, M., et Bower, M. (2021). An Analysis of the Nature of Young Students’ STEM Learning in 3D Technology-Enhanced Makerspaces. Early Education and Development, 32(1), 172–187. https://doi.org/10.1080/10409289.2020.1781325
Furlong, C. & Léger, M. T. (2022). Le tinkering au cœur du processus de résolution de problèmes en contexte de fabrication numérique à l’école. Revue hybride de l’éducation, 5(2), 127-149. https://doi.org/10.1522/rhe.v5i2.1227
Furlong, C., Léger, M.T., & Freiman, V. (2019). Le développement de compétences numériques lors de fabrication numérique : cas de Labos créatifs. La Revue canadienne de l’apprentissage et de la technologie, 45(2), 1–23. https://doi.org/10.21432/cjlt27831
Gauthier, M. (2014). Perceptions des élèves du secondaire par rapport à la résolution de problèmes en algèbre à l’aide d’un logiciel dynamique et la stratégie Prédire–investiguer–expliquer. Éducation et francophonie, 42(2), 190-214. https://doi.org/10.7202/1027913ar
Giroux, P., Monney, N., Pépin, A., Brassard, I., & Savard, V. (2020). Laboratoires créatifs en milieux scolaires: état des lieux, stratégies pédagogiques et compétences. https://constellation.uqac.ca/id/eprint/6191/1/Rapport%20final%20Labos%20cr%C3%A9atifs%20pgiroux%20et%20al%202020.pdf
Goulet-Lyle, M. P., Voyer, D., & Verschaffel, L. (2020). How does imposing a step-by-step solution method impact students’ approach to mathematical word problem-solving? ZDM, 52(1), 139-149. https://doi.org/10.1007/s11858-019-01098-w
Harris, E., Winterbottom, M., Xanthoudaki, M., & InKa de Pijer, C. (2016). Tinkering: A Practitioner Guide for Developing and Implementing Tinkering Activities. https://www.researchgate.net/profile/Maria-Xanthoudaki/publication/306066132_A_PRACTITIONER_GUIDE_FOR_DEVELOPING_AND_IMPLEMENTING_TINKERING_ACTIVITIES/links/57d10d4108ae6399a389e65d/A-PRACTITIONER-GUIDE-FOR-DEVELOPING-AND-IMPLEMENTING-TINKERING-ACTIVITIES.pdf
Hesse, F., Care, E., Buder, J., Sassenberg, K. et Griffin, P. (2015). A framework for teachable collaborative problem-solving skills. In P. Griffin, B. McGaw, & E. Care (Eds.), Assessment and teaching of 21st century skills: Methods and approaches (pp. 37–56). Springer. https://doi.org/10.1007/978-94-017-9395-7_2
Herro, D., Quigley, C., & Abimbade, O. (2021). Assessing elementary students’ collaborative problem-solving in makerspace activities. Information and Learning Sciences, 122(11/12), 774-794. https://doi.org/10.1108/ILS-08-2020-0176
Honey, M., & Kanter, D. (2013). Design, make, play: Growing the next generation of STEM innovators. Routledge.
Hughes, J., Morrison, L., Kajamaa, A., Kumpulainen, K. (2019). Makerspaces promoting students’ design thinking and collective knowledge creation: Examples from Canada and Finland. Interactivity, Game Creation, Design, Learning, and Innovation: 7th EAI International Conference, ArtsIT 2018, and 3rd EAI International Conference, 343–352. https://doi.org/10.1007/978-3-030-06134-0_38
Istiana, R., Herawati, D., Herniningtyas, F., Ichsan, I. Z., & Ali, A. (2023). STEM learning to improve problem solving ability on the topic of environmental education. Jurnal Penelitian Pendidikan IPA, 9(3), 1202–1208. https://doi.org/10.29303/jppipa.v9i3.2979
Kanadli, S. (2019). A meta-summary of qualitative findings about STEM education. International Journal of Instruction, 12(1), 959–976. https://files.eric.ed.gov/fulltext/EJ1201183.pdf
Kim, M. C. & Hannafin, M. J. (2011). Scaffolding problem solving in technology-enhanced learning environments (TELEs): Bridging research and theory with practice. Computers & Education, 56(2), 403-417. https://doi.org/10.1016/j.compedu.2010.08.024
Krulik, S. & Rudnick, J. A. (1999). Innovative tasks to improve critical and creative thinking skills. Developing Mathematical reasoning in Grades K-12, 138–145. https://files.eric.ed.gov/fulltext/EJ1201183.pdf
Leblanc, M., Freiman, V., et Furlong, C. (2022). From STEm to STEM: Learning from students working in school Makerspaces. Dans C. Michelsen, A. Beckmann, V. Freiman, U. T. Jankvist, et A. Savard (dir.), 15 Years of Mathematics Education and its Connections to the Arts and Sciences (p. 179–203). Springer
Lesh, R., & Zawojewski, J. (2007). Problem solving and modeling. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 763–804). IAP.
Lockwood, T. (2010). Design thinking. Alworth Communications.
Liedtka, J. & Ogilvie, T. (2011). Designing for growth. New York : Columbia Business Press.
Lin, Q., Yin, Y., Tang, X., Hadad, R., & Zhai, X. (2020). Assessing learning in technology-rich maker activities: A systematic review of empirical research. Computers & Education, 157, 103944. https://doi.org/10.1016/j.compedu.2020.103944
Martinez, S. L., & Stager, G. (2013). Invent to learn: Making, tinkering, and engineering in the classroom. Constructing Modern Knowledge Press.
Mason, J., Burton, L., & Stacey, K. (1982). Thinking Mathematically. Pearson Education Limited. Second Edition
Mayer, R. E. & Wittrock, M. C. (2006). Problem Solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of Educational Psychology (pp. 287-304). Routledge.
Max, A. L., Lukas, S., & Weitzel, H. (2023). The pedagogical makerspace: Learning opportunity and challenge for prospective teachers’ growth of TPACK. British Journal of Educational Technology. https://doi.org/10.1111/bjet.13324
Merrick, T. (2020). A Case Study Analysis of Problem-based Learning via Fabrication Laboratory Applications in a Southwestern Secondary School (Publication No. 27738298) [Doctoral dissertation, The University of Arizona]. ProQuest Dissertations and Theses Global. https://www.proquest.com/docview/2406952489?pq-origsite=gscholar&fromopenview=true
Mersand, S. (2020). The state of makerspace research: A review of the literature. TechTrends, 7(1), 1–13. https://doi.org/10.1007/s11528-020-00566-5
Mwadzaangati, L. E. N. (2017). An exploration of mathematical knowledge for teaching geometric proofs [doctoral dissertation, University of Malawi]. https://www.researchgate.net/profile/Lisnet-Mwadzaangat/publication/330848750_AN_EXPLORATION_OF_MATHEMATICAL_KNOWLEDGE_FOR_TEACHING_GEOMETRIC_PROOFS_PhD_Mathematics_Education_Thesis_Submitted_to_the_Department_of_Curriculum_and_Teaching_Studies_School_of_Education_in_fulfilment/links/5c582748a6fdccd6b5e1666c/AN-EXPLORATION-OF-MATHEMATICAL-KNOWLEDGE-FOR-TEACHING-GEOMETRIC-PROOFS-PhD-Mathematics-Education-Thesis-Submitted-to-the-Department-of-Curriculum-and-Teaching-Studies-School-of-Education-in-fulfilme.pdf
Organisation for Economic Cooperation and Development (OECD). (2012). Literacy, Numeracy and Problem solving in Technology-Rich Environments: Frameworks for the OECD Survey of Adult Skills. OECD Publishing. https://doi.org/10.1787/9789264128859-en
Paillé, P. (1994). L’analyse par théorisation ancrée. Cahier de recherche sociologique, 23, 147- 181.
Peppler, K., Maltese, A., Keune, A., Chang, S., & Regalla, L. (2015). The maker ed open portfolio project: Survey of Makerspaces, Part II. Dans S. Chang, A. Keune, K. Peppler, and L. Regalla (dir.), Open Portfolio Project Research Brief Series (p.47–53). San Francisco, CA: Maker Education Initiative. https://makered.org/wp-content/uploads/2015/03/Open-Portfolio-Project-Research-Brief-Series_FULL_final-small.pdf
Peppler, K. (2022). Makerspaces: Supporting creativity and innovation by design. In J. A. Plucker (Ed.), Creativity and innovation theory, research, and practice (2nd ed., pp. 265–274). Routledge. https://kyliepeppler.com/pubs/2022%20-%20BC30.pdf
Phatak, A., & Mane, V. Creativity, innovation, and cross-cultural collaboration in atal innovation mission. International Journal of Academic Research and Development, 7(5). 53–56. https://www.multidisciplinaryjournal.in/assets/archives/2022/vol7issue5/7-5-35-572.pdf
Phuntsho, U., & Dema, Y. (2019). Examining the effects of using Pólya’s problem-solving model on mathematical academic achievement and analyzing ability of the fourth grade students. Asian Journal of Education and Social Studies, 5(2), 1-8. https://doi.org/10.9734/AJESS/2019/v5i230142
Pitkänen, K., Iwata, M., & Laru, J. (2020). Exploring technology-oriented Fab Lab facilitators’ role as educators in K-12 education: Focus on scaffolding novice students’ learning in digital fabrication activities. International Journal of Child-Computer Interaction, 26, 100207. https://doi.org/10.1016/j.ijcci.2020.100207
Pólya, G. (1957). How to Solve It (2e ed.). Princeton University Press.
Raîche, G., & Noël-Gaudreault, M. (2008). Article de recherche théorique et article de recherche empirique: particularités. Revue des sciences de l’éducation, 34(2), 485-490. https://doi.org/10.7202/019691ar
Resnick, M., & Rosenbaum, E. (2013). Designing for tinkerability. In design, make, play: Growing the next generation of STEM innovators, 163–181. Routledge
Rott, B. (2012). Models of the problem solving process–A discussion referring to the processes of fifth graders. In T. Bergqvist (Ed), Learning Problem Solving and Learning Through Problem Solving, Proceedings from the 13th ProMath conference (pp. 95–109). UMERC. https://www.diva-portal.org/smash/get/diva2:594205/FULLTEXT01.pdf#page=96
Rouse, R., & Rouse, A. G. (2022). Taking the maker movement to school: A systematic review of preK-12 school-based makerspace research. Educational Research Review, 35, 100413. https://doi.org/10.1016/j.edurev.2021.100413
Salvia, G., Bruno, C., & Canina, M. R. (2016). Skilling and learning through digital do-it-yourself: the role of (co-) design. Proceedings of DRS2016: Design Research Society. 2077–2089.
Schelhowe, H. (2013). Digital realities, physical action and deep learning-FabLabs as educational environments. FabLab: Of Machines, Makers and Inventors, 93–103.
Schoenfeld, A. (1985) Mathematical Problem Solving. Academic Press.
Sheffield, R., Koul, R., Blackley, S., & Maynard, N. (2017). Makerspace in STEM for girls: A physical space to develop twenty-first-century skills. Educational Media International, 54(2), 148-164. https://doi.org/10.1080/09523987.2017.1362812
Sheridan, K., Halverson, E. R., Litts, B., Brahms, L., Jacobs-Priebe, L., & Owens, T. (2014). Learning in the making: A comparative case study of three makerspaces. Harvard Educational Review, 84(4), 505–531. https://doi.org/10.17763/haer.84.4.brr34733723j648u
Small, M. (2008). Sens des nombres et des opérations : Connaissances et stratégies. Groupe Modulo
Smith, A., Hielscher, S., Dickel, S., Soderberg, J., & van Oost, E. (2013). Grassroot digital fabrication and makerspaces: Reconfiguring, relocating, and recalibrating innovation (Working Paper, Series WSPS 2013–02). http://www.ioew.de/uploads/tx_ukioewdb/Smith_Hielscher_Dickel_S%C3%B6derberg_Oost_-Grassroots.pdf
Smith, R. C., Iversen, O. S., & Hjorth, M. (2015). Design thinking for digital fabrication in education. International Journal of Child-Computer Interaction, 5, 20-28. https://doi.org/10.1016/j.ijcci.2015.10.002
Statistics Canada. (2013). Skills in Canada: First Results from the Program for the International Assessment of Adult Competencies (PIAAC) (publication no 89–555-X). https://www.statcan.gc.ca/pub/89-555-x/89-555-x2013001-eng.htm
Strauss, A. & Corbin, J. (1994). Grounded theory methodology. In N. Denzin & Y. Lincoln (EDs), Handbook of qualitative research, 17, 273-85.
Swick, T. C. (2020). Improving computational thinking: Action research implementing a school makerspace with elementary students (Publication No. 28025463) [Doctoral dissertation, University of South Carolina]. ProQuest Dissertations and Theses Global. https://www.proquest.com/docview/2451149705?pq-origsite=gscholar&fromopenview=true
Tschimmel, K. (2012). Design Thinking as an effective Toolkit for Innovation. International Society for Professional Innovation Management Conference Proceedings, 1–20.
van Holm, E. (2014). What are makerspaces, hackerspaces, and fab labs? SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2548211
Walan, S., & Brink, H. (2023). Students’ and teachers’ responses to use of a digital self-assessment tool to understand and identify development of twenty-first century skills when working with makerspace activities. International Journal of Technology and Design Education, 1–29. https://doi.org/10.1007/s10798-023-09845-7
Winters, S., Farnsworth, K., Berry, D., Ellard, S., Glazewski, K., & Brush, T. (2023). Supporting middle school students in a problem-based makerspace: investigating distributed scaffolding. Interactive Learning Environments, 31(6), 3396–3408. https://doi.org/10.1080/10494820.2021.1928709
Yıldırım, B. (2016). An analysis and meta-synthesis of research on STEM education. Journal of Education and Practice, 7(34), 23–33. https://files.eric.ed.gov/fulltext/EJ1126734.pdf
留言 (0)