Exploring the Role of Locus Coeruleus in Alzheimer’s Disease: a Comprehensive Update on MRI Studies and Implications

• Ehrenberg AJ, Kelberman MA, Liu KY, Dahl MJ, Weinshenker D, Falgàs N, Dutt S, Mather M, Ludwig M, Betts MJ, et al. Priorities for research on neuromodulatory subcortical systems in Alzheimer’s disease: position paper from the NSS PIA of ISTAART. Alzheimers Dement. 2023;19(5):2182–96. https://doi.org/10.1002/alz.12937. This is the recent position paper by the ISTAART highlighting the importance of focusing the attention of research community on the role of locus coeruleus, together with other subcortical nuclei, in Alzheimer’s disease.

Article  PubMed  Google Scholar 

Poe GR, Foote S, Eschenko O, Johansen JP, Bouret S, Aston-Jones G, Harley CW, Manahan-Vaughan D, Weinshenker D, Valentino R, et al. Locus coeruleus: a new look at the blue spot. Nat Rev Neurosci. 2020;21(11):644–59. https://doi.org/10.1038/s41583-020-0360-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci. 2009;10(3):211–23. https://doi.org/10.1038/nrn2573.

Article  CAS  PubMed  Google Scholar 

Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. 1949. J Neuropsychiatry Clin Neurosci. 1995;7(2):251–67. https://doi.org/10.1176/jnp.7.2.251.

Article  CAS  PubMed  Google Scholar 

Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 2005;28:403–50. https://doi.org/10.1146/annurev.neuro.28.061604.135709.

Article  CAS  PubMed  Google Scholar 

Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev. 2003;42(1):33–84. https://doi.org/10.1016/s0165-0173(03)00143-7.

Article  PubMed  Google Scholar 

Giorgi FS, Galgani A, Puglisi-Allegra S, Limanaqi F, Busceti CL, Fornai F. Locus coeruleus and neurovascular unit: from its role in physiology to its potential role in Alzheimer’s disease pathogenesis. J Neurosci Res. 2020;98(12):2406–34. https://doi.org/10.1002/jnr.24718.

Article  CAS  PubMed  Google Scholar 

Giorgi FS, Saccaro LF, Galgani A, Busceti CL, Biagioni F, Frati A, Fornai F. The role of locus coeruleus in neuroinflammation occurring in Alzheimer’s disease. Brain Res Bull. 2019;153:47–58. https://doi.org/10.1016/j.brainresbull.2019.08.007.

Article  CAS  PubMed  Google Scholar 

Fernandes P, Regala J, Correia F, Gonçalves-Ferreira AJ. The human locus coeruleus 3-D stereotactic anatomy. Surg Radiol Anat. 2012;34(10):879–85. https://doi.org/10.1007/s00276-012-0979-y.

Article  CAS  PubMed  Google Scholar 

Weinshenker D. Long road to ruin: noradrenergic dysfunction in neurodegenerative disease. Trends Neurosci. 2018;41(4):211–23. https://doi.org/10.1016/j.tins.2018.01.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kelly SC, Nelson PT, Counts SE. Pontine arteriolosclerosis and locus coeruleus oxidative stress differentiate resilience from mild cognitive impairment in a clinical pathologic cohort. J Neuropathol Exp Neurol. 2021;80(4):325–35. https://doi.org/10.1093/jnen/nlab017.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manaye KF, McIntire DD, Mann DM, German DC. Locus coeruleus cell loss in the aging human brain: a non-random process. J Comp Neurol. 1995;358(1):79–87. https://doi.org/10.1002/cne.903580105.

Article  CAS  PubMed  Google Scholar 

Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70(11):960–9. https://doi.org/10.1097/NEN.0b013e318232a379.

Article  CAS  PubMed  Google Scholar 

Theofilas P, Ehrenberg AJ, Dunlop S, Di Lorenzo Alho AT, Nguy A, Leite REP, Rodriguez RD, Mejia MB, Suemoto CK, Ferretti-Rebustini REL, et al. Locus coeruleus volume and cell population changes during Alzheimer’s disease progression: a stereological study in human postmortem brains with potential implication for early-stage biomarker discovery. Alzheimers Dement. 2017;13(3):236–46. https://doi.org/10.1016/j.jalz.2016.06.2362.

Article  PubMed  Google Scholar 

Giorgi FS, Ryskalin L, Ruffoli R, Biagioni F, Limanaqi F, Ferrucci M, Busceti CL, Bonuccelli U, Fornai F. The neuroanatomy of the reticular nucleus locus coeruleus in Alzheimer’s disease. Front Neuroanat. 2017;11:80. https://doi.org/10.3389/fnana.2017.00080.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heneka MT, Ramanathan M, Jacobs AH, Dumitrescu-Ozimek L, Bilkei-Gorzo A, Debeir T, Sastre M, Galldiks N, Zimmer A, Hoehn M, et al. Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci. 2006;26(5):1343–54. https://doi.org/10.1523/JNEUROSCI.4236-05.2006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, Jardanhazi-Kurutz D, Walter J, Kirchhoff F, Hanisch UK, Kummer MP. Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci U S A. 2010;107(13):6058–63. https://doi.org/10.1073/pnas.0909586107.

Article  PubMed  PubMed Central  Google Scholar 

Jardanhazi-Kurutz D, Kummer MP, Terwel D, Vogel K, Dyrks T, Thiele A, Heneka MT. Induced LC degeneration in APP/PS1 transgenic mice accelerates early cerebral amyloidosis and cognitive deficits. Neurochem Int. 2010;57(4):375–82. https://doi.org/10.1016/j.neuint.2010.02.001.

Article  CAS  PubMed  Google Scholar 

Kalinin S, Feinstein DL, Xu HL, Huesa G, Pelligrino DA, Galea E. Degeneration of noradrenergic fibres from the locus coeruleus causes tight-junction disorganisation in the rat brain. Eur J Neurosci. 2006;24(12):3393–400. https://doi.org/10.1111/j.1460-9568.2006.05223.x.

Article  PubMed  Google Scholar 

Beardmore R, Hou R, Darekar A, Holmes C, Boche D. The locus coeruleus in aging and Alzheimer’s disease: a postmortem and brain imaging review. J Alzheimers Dis. 2021;83(1):5–22. https://doi.org/10.3233/JAD-210191.

Article  CAS  PubMed  PubMed Central  Google Scholar 

David M, Malhotra PA. New approaches for the quantification and targeting of noradrenergic dysfunction in Alzheimer’s disease. Ann Clin Transl Neurol. 2022;9(4):582–96. https://doi.org/10.1002/acn3.51539.

Article  PubMed  PubMed Central  Google Scholar 

• Betts MJ, Kirilina E, Otaduy MCG, Ivanov D, Acosta-Cabronero J, Callaghan MF, Lambert C, Cardenas-Blanco A, Pine K, Passamonti L, et al. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain. 2019;142(9):2558–71. https://doi.org/10.1093/brain/awz193. This is the first position paper by the international community emphasizing the promising utility of locus coeruleus magnetic resonance imaging as a diagnostic and research tool in the context of neurodegenerative disorders.

Article  PubMed  PubMed Central  Google Scholar 

Keren NI, Lozar CT, Harris KC, Morgan PS, Eckert MA. In vivo mapping of the human locus coeruleus. Neuroimage. 2009;47(4):1261–7. https://doi.org/10.1016/j.neuroimage.2009.06.012.

Article  PubMed  Google Scholar 

Shibata E, Sasaki M, Tohyama K, Kanbara Y, Otsuka K, Ehara S, Sakai A. Age-related changes in locus ceruleus on neuromelanin magnetic resonance imaging at 3 Tesla. Magn Reson Med Sci. 2006;5(4):197–200. https://doi.org/10.2463/mrms.5.197.

Article  PubMed  Google Scholar 

Zucca FA, Bellei C, Giannelli S, Terreni MR, Gallorini M, Rizzio E, Pezzoli G, Albertini A, Zecca L. Neuromelanin and iron in human locus coeruleus and substantia nigra during aging: consequences for neuronal vulnerability. J Neural Transm (Vienna). 2006;113(6):757–67. https://doi.org/10.1007/s00702-006-0453-2.

Article  CAS  PubMed  Google Scholar 

Chen X, Huddleston DE, Langley J, Ahn S, Barnum CJ, Factor SA, Levey AI, Hu X. Simultaneous imaging of locus coeruleus and substantia nigra with a quantitative neuromelanin MRI approach. Magn Reson Imaging. 2014;32(10):1301–6. https://doi.org/10.1016/j.mri.2014.07.003.

Article  PubMed  Google Scholar 

Dixon WT, Engels H, Castillo M, Sardashti M. Incidental magnetization transfer contrast in standard multislice imaging. Magn Reson Imaging. 1990;8(4):417–22. https://doi.org/10.1016/0730-725x(90)90050-c.

Article  CAS  PubMed  Google Scholar 

Sled JG. Modelling and interpretation of magnetization transfer imaging in the brain. Neuroimage. 2018;182:128–35. https://doi.org/10.1016/j.neuroimage.2017.11.065.

Article  PubMed  Google Scholar 

Keren NI, Taheri S, Vazey EM, Morgan PS, Granholm AC, Aston-Jones GS, Eckert MA. Histologic validation of locus coeruleus MRI contrast in post-mortem tissue. Neuroimage. 2015;113:235–45. https://doi.org/10.1016/j.neuroimage.2015.03.020.

Article  PubMed  Google Scholar 

Trujillo P, Petersen KJ, Cronin MJ, Lin YC, Kang H, Donahue MJ, Smith SA, Claassen DO. Quantitative magnetization transfer imaging of the human locus coeruleus. Neuroimage. 2019;200:191–8. https://doi.org/10.1016/j.neuroimage.2019.06.049.

Article  PubMed  Google Scholar 

Watanabe T, Tan Z, Wang X, Martinez-Hernandez A, Frahm J. Magnetic resonance imaging of noradrenergic neurons. Brain Struct Funct. 2019;224(4):1609–25. https://doi.org/10.1007/s00429-019-01858-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clewett DV, Lee TH, Greening S, Ponzio A, Margalit E, Mather M. Neuromelanin marks the spot: identifying a locus coeruleus biomarker of cognitive reserve in healthy aging. Neurobiol Aging. 2016;37:117–26. https://doi.org/10.1016/j.neurobiolaging.2015.09.019.

留言 (0)

沒有登入
gif