Flattening the biological age curve by improving metabolic health: to taurine or not to taurine, that’ s the question

[1] Partridge L, Deelen J Slagboom PE. Facing up to the global challenges of ageing. Nature 2018; 561: 45−56. doi: 10.1038/s41586-018-0457-8 [2] Ji L, Jazwinski SM, Kim S. Frailty and biological age. Ann Geriatr Med Res 2021; 25: 141−149. doi: 10.4235/agmr.21.0080 [3] Nachun D, Lu AT, Bick AG, et al. NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium. Clonal hematopoiesis associated with epigenetic aging and clinical outcomes. Aging Cell 2021; 20: e13366. doi: 10.1111/acel.13366 [4] Taylor RC, Hetz C. Mastering organismal aging through the endoplasmic reticulum proteostasis network. Aging Cell 2020; 19: e13265. doi: 10.1111/acel.13265 [5]

Poganik JR, Zhang B, Baht GS, et al. Biological age is increased by stress and restored upon recovery. Cell Metab 2023; 35: 807–820. e5.

[6] Zhang B, Trapp A, Kerepesi C, Gladyshev VN. Emerging rejuvenation strategies-Reducing the biological age. Aging Cell 2022; 21: e13538. doi: 10.1111/acel.13538 [7] Schmitz LL, Zhao W, Ratliff SM, et al. The Socioeconomic Gradient in Epigenetic Ageing Clocks: Evidence from the Multi-Ethnic Study of Atherosclerosis and the Health and Retirement Study. Epigenetics 2022; 17: 589−611. doi: 10.1080/15592294.2021.1939479 [8]

Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 2018; 10: 573−591.

[9] Liu Z, Kuo PL, Horvath S, et al. A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: A cohort study. PLoS Med 2018; 15: e1002718. doi: 10.1371/journal.pmed.1002718 [10]

Ho KM, Morgan DJ, Johnstone M, Edibam C. Biological age is superior to chronological age in predicting hospital mortality of the critically ill. Intern Emerg Med 2023 18: 2019–2028.

[11] Ho KM. Biological age as a predictor of unplanned intensive care readmission during the same hospitalization. Heart Lung 2023; 62: 249−255. doi: 10.1016/j.hrtlng.2023.08.010 [12] Augusto-Oliveira M, Arrifano GP, Leal-Nazaré CG, et al. Exercise reshapes the brain: molecular, cellular, and structural changes associated with cognitive improvements. Mol Neurobiol 2023. Published Online First: Jul 31, 2023. doi: 10.1007/s12035-023-03492–8. [13] Yi M, Zhang W, Zhang X, et al. The effectiveness of Otago exercise program in older adults with frailty or pre-frailty: A systematic review and meta-analysis. Arch Gerontol Geriatr 2023; 114: 105083. doi: 10.1016/j.archger.2023.105083 [14] Lohman T, Bains G, Cole S, et al. High-Intensity interval training reduces transcriptomic age: A randomized controlled trial. Aging Cell 2023; 22: e13841. doi: 10.1111/acel.13841 [15]

Fitzgerald KN, Campbell T, Makarem S, Hodges R. Potential reversal of biological age in women following an 8-week methylation-supportive diet and lifestyle program: a case series. Aging (Albany NY) 2023; 15: 1833−1839.

[16] Ho E, Qualls C, Villareal DT. Effect of diet, exercise, or both on biological age and healthy aging in older adults with obesity: secondary analysis of a randomized controlled trial. J Nutr Health Aging 2022; 26: 552−557. doi: 10.1007/s12603-022-1812-x [17] Memelink RG, Hummel M, Hijlkema A, et al. Additional effects of exercise to hypocaloric diet on body weight, body composition, glycaemic control and cardio-respiratory fitness in adults with overweight or obesity and type 2 diabetes: A systematic review and meta-analysis. Diabet Med 2023; 40: e15096. doi: 10.1111/dme.15096 [18] Ames BN. Prolonging healthy aging: Longevity vitamins and proteins. Proc Natl Acad Sci U S A 2018; 115: 10836−10844. doi: 10.1073/pnas.1809045115 [19]

Oja SS, Saransaari P. Taurine and the Brain. Adv Exp Med Biol 2022; 1370: 325−331.

[20] Singh P, Gollapalli K, Mangiola S, et al. Taurine deficiency as a driver of aging. Science 2023; 380: eabn9257. doi: 10.1126/science.abn9257 [21]

Beutner F, Ritter C, Scholz M, et al. A metabolomic approach to identify the link between sports activity and atheroprotection. Eur J Prev Cardiol 2022; 29(): 436−444.

[22]

Schuit FC, Kiekens R, Pipeleers DG. Measuring the balance between insulin synthesis and insulin release. Biochem Biophys Res Commun 1991; 178: 1182−1187.

[23] Sharma RB, Landa-Galván HV, Alonso LC. Living dangerously: protective and harmful er stress responses in pancreatic β-cells. Diabetes 2021; 70: 2431−2443. doi: 10.2337/dbi20-0033 [24] Zhao D, Zhang X, Bian Y, et al. Taurine reduces apoptosis mediated by endoplasmic reticulum stress in islet β-cells induced by high-fat and -glucose diets. Food Chem Toxicol 2023; 175: 113700. doi: 10.1016/j.fct.2023.113700 [25] Sarnobat D, Moffett RC, Ma J, et al. Taurine rescues pancreatic β-cell stress by stimulating α-cell transdifferentiation. Biofactors 2023; 49: 646−662. doi: 10.1002/biof.1938 [26] Ural C, Celik A, Ozbal S, et al. The renoprotective effects of taurine against diabetic nephropathy via the p38 MAPK and TGF-β/Smad2/3 signalling pathways. Amino Acids. Published Online First: October 7, 2023. doi: 10.1007/s00726-023-03342-w. [27] Lee JH, Lee JH, Rane SG. TGF-β signalling in pancreatic islet β cell development and function. Endocrinology 2021; 162: bqaa233. doi: 10.1210/endocr/bqaa233 [28] Schaffer S, Kim HW. Effects and mechanisms of taurine as a therapeutic agent. Biomol Ther (Seoul) 2018; 26: 225−241. doi: 10.4062/biomolther.2017.251 [29] Pérez-Hernández E, Pastrana-Carballo JJ, Gómez-Chávez F, et al. A key metabolic regulator of bone and cartilage health. Endocrinol Metab (Seoul) 2022; 37: 559−574. doi: 10.3803/EnM.2022.1443 [30]

Tao X, Zhang Z, Yang Z, Rao B. The effects of taurine supplementation on diabetes mellitus in humans: A systematic review and meta-analysis. Food Chem (Oxf) 2022; 4: 100106.

[31] Page LK, Jeffries O, Waldron M. Acute taurine supplementation enhances thermoregulation and endurance cycling performance in the heat. Eur J Sport Sci 2019; 19: 1101−1109. doi: 10.1080/17461391.2019.1578417 [32] Azuma J, Sawamura A, Awata N. Usefulness of taurine in chronic congestive heart failure and its prospective application. Jpn Circ J 1992; 56: 95−99. doi: 10.1253/jcj.56.95 [33] Chakraborty S, Lulla A, Cheng X, et al. Conjugated bile acids are nutritionally re-programmable antihypertensive metabolites. J Hypertens 2023; 41: 979−994. doi: 10.1097/HJH.0000000000003423 [34] Zangerolamo L, Carvalho M, Barssotti L, et al. The bile acid TUDCA reduces age-related hyperinsulinemia in mice. Sci Rep 2022; 12: 22273. doi: 10.1038/s41598-022-26915-3 [35] Duszka K. Versatile triad alliance: bile acid, taurine and microbiota. Cells 2022; 11: 2337. doi: 10.3390/cells11152337 [36] Freitas IN, da Silva JA Jr, de Oliveira KM, et al. Insights by which TUDCA is a potential therapy against adiposity. Front Endocrinol (Lausanne) 2023; 14: 1090039. doi: 10.3389/fendo.2023.1090039 [37] Christiansen CB, Trammell SAJ, Wewer Albrechtsen NJ, et al. Bile acids drive colonic secretion of glucagon-like-peptide 1 and peptide-YY in rodents. Am J Physiol Gastrointest Liver Physiol 2019; 316: G574−G584. doi: 10.1152/ajpgi.00010.2019 [38] Reilly SJ, O'Shea EM, Andersson U, et al. A peroxisomal acyltransferase in mouse identifies a novel pathway for taurine conjugation of fatty acids. FASEB J 2007; 21: 99−107. doi: 10.1096/fj.06-6919com [39] Grevengoed TJ, Trammell SAJ, McKinney MK, et al. N-acyl taurines are endogenous lipid messengers that improve glucose homeostasis. Proc Natl Acad Sci U S A 2019; 116(49): 24770−24778. doi: 10.1073/pnas.1916288116 [40] Viljoen A, Bain SC. Glucagon-like peptide 1 therapy: from discovery to type 2 diabetes and beyond. Endocrinol Metab (Seoul) 2023; 38: 25−33. doi: 10.3803/EnM.2022.1642 [41] Gribble FM, Reimann F. Metabolic messengers: glucagon-like peptide 1. Nat Metab 2021; 3: 142−148. doi: 10.1038/s42255-020-00327-x [42]

da Silva Junior JA, Ribeiro RA. Potential binding sites for taurine on the insulin receptor: a molecular docking study. Adv Exp Med Biol 2022; 1370: 257−266.

[43] da Silva JA Jr, Figueiredo LS, Chaves JO, et al. Effects of tauroursodeoxycholic acid on glucose homeostasis: Potential binding of this bile acid with the insulin receptor. Life Sci 2021; 285: 120020. doi: 10.1016/j.lfs.2021.120020 [44] Jeong JK, Horwath JA, Simonyan H, et al. Subfornical organ insulin receptors tonically modulate cardiovascular and metabolic function. Physiol Genomics 2019; 51: 333−341. doi: 10.1152/physiolgenomics.00021.2019 [45] Wang Z, Ohata Y, Watanabe Y, et al. Taurine improves lipid metabolism and increases resistance to oxidative stress. J Nutr Sci Vitaminol (Tokyo) 2020; 66: 347−356. doi: 10.3177/jnsv.66.347 [46] Gregor A, Pignitter M, Fahrngruber C, et al. Caloric restriction increases levels of taurine in the intestine and stimulates taurine uptake by conjugation to glutathione. J Nutr Biochem 2021; 96: 108781. doi: 10.1016/j.jnutbio.2021.108781 [47] Gregor A, Pignitter M, Trajanoski S, et al. Microbial contribution to the caloric restriction-triggered regulation of the intestinal levels of glutathione transferases, taurine, and bile acid. Gut Microbes 2021; 13: 1992236. doi: 10.1080/19490976.2021.1992236 [48] Laiteerapong N, Ham SA, Gao Y, et al. The Legacy effect in type 2 diabetes: impact of early glycemic control on future complications (the diabetes & aging study). Diabetes Care 2019; 42: 416−426. doi: 10.2337/dc17-1144 [49] Schöttker B, Rathmann W, Herder C, et al. HbA1c levels in non-diabetic older adults - No J-shaped associations with primary cardiovascular events, cardiovascular and all-cause mortality after adjustment for confounders in a meta-analysis of individual participant data from six cohort studies. BMC Med 2016; 14: 26. doi: 10.1186/s12916-016-0570-1 [50] Li C, Zhou Y, Niu Y, et al. Deficiency of Pdk1 drives heart failure by impairing taurine homeostasis through Slc6a6. FASEB J 2023; 37: e23134. doi: 10.1096/fj.202300272R [51] Beyranvand MR, Khalafi MK, Roshan VD, et al. Effect of taurine supplementation on exercise capacity of patients with heart failure. J Cardiol 2011; 57: 333−337. doi: 10.1016/j.jjcc.2011.01.007 [52] Razzaghi A, Choobineh S, Gaeini A, Soori R. Interaction of exercise training with taurine attenuates infarct size and cardiac dysfunction via Akt-Foxo3a-Caspase-8 signaling pathway. Amino Acids 2023; 55: 869−880. doi: 10.1007/s00726-023-03275-4 [53] Ahmadian M, Dabidi Roshan V, Ashourpore E. Taurine supplementation improves functional capacity, myocardial oxygen consumption, and electrical activity in heart failure. J Diet Suppl 2017; 14: 422−432. doi: 10.1080/19390211.2016.1267059 [54] Milei J, Ferreira R, Llesuy S, et al. Reduction of reperfusion injury with preoperative rapid intravenous infusion of taurine during myocardial revascularization. Am Heart J 1992; 123: 339−345. doi: 10.1016/0002-8703(92)90644-B [55] Díaz HS, Andrade DC, Toledo C, et al. Inhibition of brainstem endoplasmic reticulum stress rescues cardiorespiratory dysfunction in high output heart failure. Hypertension 2021; 77: 718−728. doi: 10.1161/HYPERTENSIONAHA.120.16056 [56] Sun Q, Wang B, Li Y, et al. Taurine supplementation lowers blood pressure and improves vascular function in prehypertension: randomized, double-blind, placebo-controlled study. Hypertension 2016; 67: 541−549. doi: 10.1161/HYPERTENSIONAHA.115.06624 [57] Yang JY, Zhang TT, Yu ZL, et al. Taurine alleviates trimethylamine n-oxide-induced atherosclerosis by regulating bile acid metabolism in ApoE-/- Mice. J Agric Food Chem 2022; 70: 5738−5747. doi: 10.1021/acs.jafc.2c01376 [58] Maleki V, Alizadeh M, Esmaeili F, Mahdavi R. The effects of taurine supplementation on glycemic control and serum lipid profile in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Amino Acids 2020; 52: 905−914. doi: 10.1007/s00726-020-02859-8 [59] Haidari F, Asadi M, Mohammadi-Asl J, Ahmadi-Angali K. Effect of weight-loss diet combined with taurine supplementation on body composition and some biochemical markers in obese women: a randomized clinical trial. Amino Acids 2020; 52: 1115−1124. doi: 10.1007/s00726-020-02876-7 [60] [61]

Trimarco V, Izzo R, Gallo P, et al. Long-lasting Control of LDL-Cholesterol induces a forty percent reduction in the incidence of cardiovascular events: new insights from a 7-year study. J Pharmacol Exp Ther 2023. doi: 10.1124/jpet.123.001878. Published Online First: Sep 29, 2023.

[62] Yamori Y, Taguchi T, Hamada A, et al. Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. J Biomed Sci 2010; 17(Suppl 1): S6. doi: 10.1186/1423-0127-17-S1-S6 [63] Sun S, He D, Luo C, et al. Metabolic syndrome and its components are associated with altered amino acid profile in Chinese Han population. Front Endocrinol (Lausanne) 2022; 12: 795044. doi: 10.3389/fendo.2021.795044 [64] Shearrer GE. The interaction of glycemia with anxiety and depression is related to altered cerebellar and cerebral functional correlations. Brain Sci 2023; 13: 1086. doi: 10.3390/brainsci13071086 [65]

Song Y, Cho JH, Kim H, et al. Association between taurine level in the hippocampus and major depressive disorder in young women: a proton magnetic resonance spectroscopy study at 7 Tesla. Biol Psychiatry 2023. doi: 10.1016/j.biopsych.2023.08.025. Published Online First: Sep 5, 2023.

[66]

Wu G, Zhou J, Yang M, et al. The Regulatory Effects of taurine on neurogenesis and apoptosis of neural stem cells in the hippocampus of rats. Adv Exp Med Biol 2022; 1370: 351−367.

[67] Zhu Y, Wang R, Fan Z, et al. Taurine alleviates chronic social defeat stress-induced depression by protecting cortical neurons from dendritic spine loss. Cell Mol Neurobiol 2023; 43: 827−840. doi: 10.1007/s10571-022-01218-3 [68] Moludi J, Qaisar SA, Kadhim MM, et al. Protective and therapeutic effectiveness of taurine supplementation plus low calorie diet on metabolic parameters and endothelial markers in patients with diabetes mellitus: a randomized, clinical trial. Nutr Metab (Lond) 2022; 19(1): 49. doi: 10.1186/s12986-022-00684-2 [69] Ma CC, Butler D, Milligan V, et al. Continuous process for the production of taurine from monoethanolamine. Ind Eng Chem Res 2020; 59: 13007−13015. doi: 10.1021/acs.iecr.0c02277 [70] Rios LP, Ye C, Thabane L. Association between framing of the research question using the PICOT format and reporting quality of randomized controlled trials. BMC Med Res Methodol 2010; 10: 11. doi: 10.1186/1471-2288-10-11 [71] Sak D, Erdenen F, Müderrisoglu C, et al. The relationship between plasma taurine levels and diabetic complications in patients with type 2 diabetes mellitus. Biomolecules 2019; 9(3): 96. doi: 10.3390/biom9030096 [72] Merheb M, Daher RT, Nasrallah M, et al. Taurine intestinal absorption and renal excretion test in diabetic patients: a pilot study. Diabetes Care 2007; 30: 2652−2654. doi: 10.2337/dc07-0872 [73] Zheng Y, Ceglarek U, Huang T, et al. Plasma taurine, diabetes genetic predisposition, and changes of insulin sensitivity in response to weight-loss diets. J Clin Endocrinol Metab 2016; 101: 3820−3826. doi: 10.1210/jc.2016-1760 [74] Discacciati A, Bellavia A, Lee JJ, et al. Med4way: a Stata command to investigate mediating and interactive mechanisms using the four-way effect decomposition. Int J Epidemiol 2019; 48: 15−20. doi: 10.1093/ije/dyy236 [75] Suliman ME, Bárány P, Filho JC, et al. Accumulation of taurine in patients with renal failure. Nephrol Dial Transplant 2002; 17: 528−529. doi: 10.1093/ndt/17.3.528 [76] Roşca AE, Vlădăreanu AM, Mirica R, et al. Taurine and its derivatives: analysis of the inhibitory effect on platelet function and their antithrombotic potential. J Clin Med 2022; 11: 666. doi: 10.3390/jcm11030666 [77]

Scientific Opinion of the Panel on Food Additives and Nutrient Sources added to Food on a request from the Commission on the use of taurine and D-glucurono-γ-lactone as constituents of the so-called “energy” drinks. The EFSA J 2009; 935: 1–31.

[78] Santulli G, Kansakar U, Varzideh F, et al. Functional Role of Taurine in Aging and Cardiovascular Health: An Updated Overview. Nutrients 2023; 15: 4236. doi: 10.3390/nu15194236 [79] Akselrod D, Friger M, Biderman A. HbA1C variability among type 2 diabetic patients: a retrospective cohort study. Diabetol Metab Syndr 2021; 13: 101. doi: 10.1186/s13098-021-00717-5 [80] Riedel B, Li MH, Lee CHA, et al; METS Study Investigators. A simplified (modified) Duke Activity Status Index (M-DASI) to characterise functional capacity: a secondary analysis of the Measurement of Exercise Tolerance before Surgery (METS) study. Br J Anaesth 2021; 126: 181−190. doi: 10.1016/j.bja.2020.06.016 [81] Canada JM, Reynolds MA, Myers R, et al. Usefulness of the Duke activity status index to select an optimal cardiovascular exercise stress test protocol. Am J Cardiol 2021; 146: 107−114. doi: 10.1016/j.amjcard.2021.01.030 [82]

留言 (0)

沒有登入
gif