Modeling Glutaric Aciduria Type I in human neuroblastoma cells recapitulates neuronal damage that can be rescued by gene replacement

Goodman SI, Markey SP, Moe PG, Miles BS, Teng CC. Glutaric aciduria; a “new” disorder of amino acid metabolism. Biochem Med. 1975;12:12–21.

Article  CAS  PubMed  Google Scholar 

Schuurmans IME, Dimitrov B, Schröter J, Ribes A, de la Fuente RP, Zamora B, et al. Exploring genotype–phenotype correlations in glutaric aciduria type 1. J Inherit Metab Dis. 2023;46:371–90.

Article  CAS  PubMed  Google Scholar 

Yuan Y, Dimitrov B, Boy N, Gleich F, Zielonka M, Kölker S. Phenotypic prediction in glutaric aciduria type 1 combining in silico and in vitro modeling with real-world data. J Inherit Metab Dis. 2023;46:391–405.

Article  CAS  PubMed  Google Scholar 

Kölker S, Sauer SW, Hoffmann GF, Müller I, Morath MA, Okun JG. Pathogenesis of CNS involvement in disorders of amino and organic acid metabolism. J Inherit Metab Dis. 2008;31:194–204.

Article  PubMed  Google Scholar 

Kölker S, Garbade SF, Greenberg CR, Leonard JV, Saudubray JM, Ribes A, et al. Natural history, outcome, and treatment efficacy in children and adults with glutaryl-CoA dehydrogenase deficiency. Pediatr Res. 2006;59:840–7.

Article  PubMed  Google Scholar 

Pérez-Dueñas B, De La Osa A, Capdevila A, Navarro-Sastre A, Leist A, Ribes A, et al. Brain injury in glutaric aciduria type I: the value of functional techniques in magnetic resonance imaging. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc. 2009;13:534–40.

Article  Google Scholar 

Couce ML, López-Suárez O, Bóveda MD, Castiñeiras DE, Cocho JA, García-Villoria J, et al. Glutaric aciduria type I: outcome of patients with early- versus late-diagnosis. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc. 2013;17:383–9.

Article  Google Scholar 

Boy N, Mühlhausen C, Maier EM, Heringer J, Assmann B, Burgard P, et al. Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: second revision. J Inherit Metab Dis. 2017;40:75–101.

Article  PubMed  Google Scholar 

Boy N, Mühlhausen C, Maier EM, Ballhausen D, Baumgartner MR, Beblo S, et al. Recommendations for diagnosing and managing individuals with glutaric aciduria type 1: third revision. J Inherit Metab Dis. 2023;46:482–519.

Busquets C, Begon˜ B, Merinero B, Julia´ J, Vaquerizo J, Orozco M, et al. Glutaryl-CoA dehydrogenase deficiency in Spain: evidence of two groups of patients, genetically, and biochemically distinct. 2000;48:315–22.

Koeller DM, Woontner M, Crnic LS, Kleinschmidt-DeMasters B, Stephens J, Hunt EL, et al. Biochemical, pathologic and behavioral analysis of a mouse model of glutaric acidemia type I. Hum Mol Genet. 2002;11:347–57.

Article  CAS  PubMed  Google Scholar 

Zinnanti WJ, Lazovic J, Housman C, LaNoue K, O’Callaghan JP, Simpson I, et al. Mechanism of age-dependent susceptibility and novel treatment strategy in glutaric acidemia type I. J Clin Invest. 2007;117:3258–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zinnanti WJ, Lazovic J, Wolpert EB, Antonetti DA, Smith MB, Connor JR, et al. A diet-induced mouse model for glutaric aciduria type I. Brain. 2006;129:899–910.

Article  PubMed  Google Scholar 

Sauer SW, Okun JG, Fricker G, Mahringer A, Müller I, Crnic LR, et al. Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood-brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. J Neurochem. 2006;97:899–910.

Article  CAS  PubMed  Google Scholar 

Kölker S, Koeller DM, Okun JG, Hoffmann GF. Pathomechanisms of neurodegeneration in glutaryl-CoA dehydrogenase deficiency. Ann Neurol. 2004;55:7–12.

Article  PubMed  Google Scholar 

Rodrigues MDN, Seminotti B, Amaral AU, Leipnitz G, Goodman SI, Woontner M, et al. Experimental evidence that overexpression of NR2B glutamate receptor subunit is associated with brain vacuolation in adult glutaryl-CoA dehydrogenase deficient mice: a potential role for glutamatergic-induced excitotoxicity in GA I neuropathology. J Neurol Sci. 2015;359:133–40.

Article  CAS  PubMed  Google Scholar 

Rio P, Baños R, Lombardo A, Quintana-Bustamante O, Alvarez L, Garate Z, et al. Targeted gene therapy and cell reprogramming in Fanconi anemia. EMBO Mol Med. 2014;6:835–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shipley MM, Mangold CA, Szpara ML. Differentiation of the SH-SY5Y human neuroblastoma cell line. J Vis Exp. 2016;108:53193.

Wittig I, Braun H-P, Schägger H. Blue native PAGE. Nat Protoc. 2006;1:418–28.

Article  CAS  PubMed  Google Scholar 

Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9:515–40.

Article  CAS  PubMed  Google Scholar 

Baric I, Wagner L, Feyh P, Liesert M, Buckel W, Hoffmann GF. Sensitivity and specificity of free and total glutaric acid and 3-hydroxyglutaric acid measurements by stable-isotope dilution assays for the diagnosis of glutaric aciduria type I. J Inherit Metab Dis. 1999;22:867–81.

Article  CAS  PubMed  Google Scholar 

Cudré-Cung HP, Remacle N, do Vale-Pereira S, Gonzalez M, Henry H, Ivanisevic J, et al. Ammonium accumulation and chemokine decrease in culture media of Gcdh−/− 3D reaggregated brain cell cultures. Mol Genet Metab. 2019;126:416–28. https://doi.org/10.1016/j.ymgme.2019.01.009.

Article  CAS  PubMed  Google Scholar 

Gao J, Zhang C, Fu X, Yi Q, Tian F, Ning Q, et al. Effects of targeted suppression of Glutaryl-CoA dehydrogenase by lentivirus-mediated shRNA and excessive intake of lysine on apoptosis in rat striatal neurons. PLoS One. 2013;8:e63084.

Fu X, Gao H, Tian F, Gao J, Lou L, Liang Y, et al. Mechanistic effects of amino acids and glucose in a novel glutaric aciduria type 1 cell model. PLoS One. 2014;9:e110181.

Article  PubMed  PubMed Central  Google Scholar 

Olivera-Bravo S, Ribeiro CAJ, Isasi E, Trías E, Leipnitz G, Díaz-Amarilla P, et al. Striatal neuronal death mediated by astrocytes from the Gcdh-/- mouse model of glutaric acidemia type I. Hum Mol Genet. 2015;24:4504–15.

Article  CAS  PubMed  Google Scholar 

Schauwecker PE, Steward O. Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. Proc Natl Acad Sci USA. 1997;94:4103–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin LJ, Chang Q. DNA damage response and repair, DNA methylation, and cell death in human neurons and experimental animal neurons are different. J Neuropathol Exp Neurol. 2018;77:636–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Pan L, Pembroke WG, Rexach JE, Godoy MI, Condro MC, et al. Conservation and divergence of vulnerability and responses to stressors between human and mouse astrocytes. Nat Commun. 2021;12:3958.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bakken TE, van Velthoven CT, Menon V, Hodge RD, Yao Z, Nguyen TN, et al. Single-cell and single-nucleus RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human primates, and humans. Elife. 2021;10:e64875.

Loor G, Kondapalli J, Schriewer JM, Chandel NS, Vanden Hoek TL, Schumacker PT. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. Free Radic Biol Med. 2010;49:1925–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rodrigues MDN, Seminotti B, Zanatta Â, de Mello Gonçalves A, Bellaver B, Amaral AU, et al. Higher vulnerability of menadione-exposed cortical astrocytes of glutaryl-CoA dehydrogenase deficient mice to oxidative stress, mitochondrial dysfunction, and cell death: implications for the neurodegeneration in glutaric aciduria type I. Mol Neurobiol. 2017;54:4795–805.

Article  CAS  PubMed  Google Scholar 

Tripathi R, Gupta R, Sahu M, Srivastava D, Das A, Ambasta RK, et al. Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. Environ Sci Pollut Res Int. 2022;29:62160–207.

Article  PubMed  Google Scholar 

Seminotti B, Amaral AU, da Rosa MS, Fernandes CG, Leipnitz G, Olivera-Bravo S, et al. Disruption of brain redox homeostasis in glutaryl-CoA dehydrogenase deficient mice treated with high dietary lysine supplementation. Mol Genet Metab. 2013;108:30–9.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif