Host Lipid Manipulation by Intracellular Bacteria: Moonlighting for Immune Evasion

Agarwal P, Gordon S, Martinez FO (2021) Foam cell macrophages in tuberculosis. Front Immunol 12:775326

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aigal S, Claudinon J, Romer W (2015) Plasma membrane reorganization: a glycolipid gateway for microbes. Biochim Biophys Acta 1853(4):858–871

Article  CAS  PubMed  Google Scholar 

Al-Aghbar MA, Jainarayanan AK, Dustin ML, Roffler SR (2022) The interplay between membrane topology and mechanical forces in regulating T cell receptor activity. Commun Biol 5(1):40

Article  CAS  PubMed  PubMed Central  Google Scholar 

Almeida L, Everts B (2021) Fa(c)t checking: How fatty acids shape metabolism and function of macrophages and dendritic cells. Eur J Immunol 51(7):1628–1640

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

Article  CAS  PubMed  Google Scholar 

Arai R, Soda S, Okutomi T, Morita H, Ohmi F, Funakoshi T, Takemasa A, Ishii Y (2018) Lipid accumulation in peripheral blood dendritic cells and anticancer immunity in patients with lung cancer. J Immunol Res 2018:5708239

Article  PubMed  PubMed Central  Google Scholar 

Arasaki K, Roy CR (2010) Legionella pneumophila promotes functional interactions between plasma membrane syntaxins and Sec22b. Traffic 11(5):587–600

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arasaki K, Kimura H, Tagaya M, Roy CR (2018) Legionella remodels the plasma membrane-derived vacuole by utilizing exocyst components as tethers. J Cell Biol 217(11):3863–3872

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asrat S, de Jesus DA, Hempstead AD, Ramabhadran V, Isberg RR (2014) Bacterial pathogen manipulation of host membrane trafficking. Annu Rev Cell Dev Biol 30:79–109

Article  CAS  PubMed  Google Scholar 

Azenabor AA, Kennedy P, Balistreri S (2007) Chlamydia trachomatis infection of human trophoblast alters estrogen and progesterone biosynthesis: an insight into role of infection in pregnancy sequelae. Int J Med Sci 4(4):223–231

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baardman J, Verberk SGS, van der Velden S, Gijbels MJJ, van Roomen C, Sluimer JC, Broos JY, Griffith GR, Prange KHM, van Weeghel M, Lakbir S, Molenaar D, Meinster E, Neele AE, Kooij G, de Vries HE, Lutgens E, Wellen KE, de Winther MPJ, Van den Bossche J (2020) Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques. Nat Commun 11(1):6296

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banhart S, Schafer EK, Gensch JM, Heuer D (2019) Sphingolipid metabolism and transport in Chlamydia trachomatis and Chlamydia psittaci Infections. Front Cell Dev Biol 7:223

Article  PubMed  PubMed Central  Google Scholar 

Bieberich E (2018) Sphingolipids and lipid rafts: novel concepts and methods of analysis. Chem Phys Lipids 216:114–131

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blouin CM, Hamon Y, Gonnord P, Boularan C, Kagan J, Viaris de Lesegno C, Ruez R, Mailfert S, Bertaux N, Loew D, Wunder C, Johannes L, Vogt G, Contreras FX, Marguet D, Casanova JL, Gales C, He HT, Lamaze C (2016) Glycosylation-dependent IFN-gammaR partitioning in lipid and actin nanodomains is critical for JAK activation. Cell 166(4):920–934

Article  CAS  PubMed  Google Scholar 

Brzostek A, Pawelczyk J, Rumijowska-Galewicz A, Dziadek B, Dziadek J (2009) Mycobacterium tuberculosis is able to accumulate and utilize cholesterol. J Bacteriol 191(21):6584–6591

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bukowski M, Wladyka B, Dubin G (2010) Exfoliative toxins of Staphylococcus aureus. Toxins (basel) 2(5):1148–1165

Article  CAS  PubMed  Google Scholar 

Cammarota E, Soriani C, Taub R, Morgan F, Sakai J, Veatch SL, Bryant CE, Cicuta P (2020) Criticality of plasma membrane lipids reflects activation state of macrophage cells. J R Soc Interface 17(163):20190803

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castoldi A, Monteiro LB, van Teijlingen Bakker N, Sanin DE, Rana N, Corrado M, Cameron AM, Hassler F, Matsushita M, Caputa G, Klein Geltink RI, Buscher J, Edwards-Hicks J, Pearce EL, Pearce EJ (2020) Triacylglycerol synthesis enhances macrophage inflammatory function. Nat Commun 11(1):4107

Article  CAS  PubMed  PubMed Central  Google Scholar 

Challagundla N, Saha B, Agrawal-Rajput R (2022) Insights into inflammasome regulation: cellular, molecular, and pathogenic control of inflammasome activation. Immunol Res 70(5):578–606

Article  CAS  PubMed  Google Scholar 

Challagundla N, Shah D, Yadav S, Agrawal-Rajput R (2022) Saga of monokines in shaping tumour-immune microenvironment: origin to execution. Cytokine 157:155948

Article  CAS  PubMed  Google Scholar 

Chen AL, Johnson KA, Lee JK, Sutterlin C, Tan M (2012) CPAF: a chlamydial protease in search of an authentic substrate. PLoS Pathog 8(8):e1002842

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cocchiaro JL, Kumar Y, Fischer ER, Hackstadt T, Valdivia RH (2008) Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc Natl Acad Sci U S A 105(27):9379–9384

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cossart P, Roy CR (2010) Manipulation of host membrane machinery by bacterial pathogens. Curr Opin Cell Biol 22(4):547–554

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cossart P, Helenius A (2014) Endocytosis of viruses and bacteria. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a016972

Article  PubMed  PubMed Central  Google Scholar 

Dalebroux ZD, Miller SI (2014) Salmonellae PhoPQ regulation of the outer membrane to resist innate immunity. Curr Opin Microbiol 17:106–113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dautry-Varsat A, Subtil A, Hackstadt T (2005) Recent insights into the mechanisms of Chlamydia entry. Cell Microbiol 7(12):1714–1722

CAS  PubMed  Google Scholar 

Deng Y, Hu JC, He SH, Lou B, Ding TB, Yang JT, Mo MG, Ye DY, Zhou L, Jiang XC, Yu K, Dong JB (2021) Sphingomyelin synthase 2 facilitates M2-like macrophage polarization and tumor progression in a mouse model of triple-negative breast cancer. Acta Pharmacol Sin 42(1):149–159

Article  CAS  PubMed  Google Scholar 

Deretic V (2008) Autophagy, an immunologic magic bullet: Mycobacterium tuberculosis phagosome maturation block and how to bypass it. Future Microbiol 3(5):517–524

Article  CAS  PubMed  Google Scholar 

Derre I, Swiss R, Agaisse H (2011) The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLoS Pathog 7(6):e1002092

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dykstra M, Cherukuri A, Sohn HW, Tzeng SJ, Pierce SK (2003) Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 21:457–481

Article  CAS  PubMed  Google Scholar 

Elwell CA, Engel JN (2012) Lipid acquisition by intracellular Chlamydiae. Cell Microbiol 14(7):1010–1018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elwell CA, Jiang S, Kim JH, Lee A, Wittmann T, Hanada K, Melancon P, Engel JN (2011) Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLoS Pathog 7(9):e1002198

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elwell CA, Czudnochowski N, von Dollen J, Johnson JR, Nakagawa R, Mirrashidi K, Krogan NJ, Engel JN, Rosenberg OS (2017) Chlamydia interfere with an interaction between the mannose-6-phosphate receptor and sorting nexins to counteract host restriction. Elife 6:e22709

Article  PubMed  PubMed Central  Google Scholar 

Faris R, Merling M, Andersen SE, Dooley CA, Hackstadt T, Weber MM (2019) Chlamydia trachomatis CT229 subverts rab GTPase-dependent CCV trafficking pathways to promote Chlamydial infection. Cell Rep 26(12):3380-3390.e3385

Article  CAS  PubMed 

留言 (0)

沒有登入
gif