Isolated Cardiac Ryanodine Receptor Function Varies Between Mammals

Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM (2005) Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circ Res 97(12):1314–1322. https://doi.org/10.1161/01.RES.0000194329.41863.89

Article  PubMed  Google Scholar 

Balshaw DM, Xu L, Yamaguchi N, Pasek DA, Meissner G (2001) Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). J Biol Chem 276(23):20144–20153. https://doi.org/10.1074/jbc.M010771200

Article  PubMed  Google Scholar 

Bers D (2001) Excitation-contraction coupling and cardiac contractile force. Kluwer Academic Press, Dordrecht

Book  Google Scholar 

Bers DM (2000) Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res 87(4):275–281. https://doi.org/10.1161/01.res.87.4.275

Article  PubMed  Google Scholar 

Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49. https://doi.org/10.1146/annurev.physiol.70.113006.100455

Article  PubMed  Google Scholar 

Bers DM (2014) Cardiac sarcoplasmic reticulum calcium leak: Basis and roles in cardiac dysfunction. Annu Rev Physiol 76:107–127. https://doi.org/10.1146/annurev-physiol-020911-153308

Article  PubMed  Google Scholar 

Camors E, Valdivia HH (2014) CaMKII regulation of cardiac ryanodine receptors and inositol triphosphate receptors. Front Pharmacol. https://doi.org/10.3389/fphar.2014.00101

Article  PubMed  PubMed Central  Google Scholar 

Chen H, Valle G, Furlan S, Nani A, Gyorke S, Fill M, Volpe P (2013) Mechanism of calsequestrin regulation of single cardiac ryanodine receptor in normal and pathological conditions. J Gen Physiol 142(2):127–136. https://doi.org/10.1085/jgp.201311022

Article  PubMed  PubMed Central  Google Scholar 

Currie S, Loughrey CM, Craig M-A, Smith GL (2004) Calcium/calmodulin-dependent protein kinase IIdelta associates with the ryanodine receptor complex and regulates channel function in rabbit heart. Biochem J 377(Pt 2):357–366. https://doi.org/10.1042/BJ20031043

Article  PubMed  PubMed Central  Google Scholar 

Desantiago J, Ai X, Islam M, Acuna G, Ziolo MT, Bers DM, Pogwizd SM (2008) Arrhythmogenic effects of beta2-adrenergic stimulation in the failing heart are attributable to enhanced sarcoplasmic reticulum Ca2+ load. Circ Res 102(11):1389–1397. https://doi.org/10.1161/CIRCRESAHA.107.169011

Article  PubMed  PubMed Central  Google Scholar 

Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82(4):893–922. https://doi.org/10.1152/physrev.00013.2002

Article  PubMed  Google Scholar 

Gillespie D, Chen H, Fill M (2012) Is ryanodine receptor a calcium or magnesium channel? Roles of K+ and Mg2+ during Ca2+ release. Cell Calcium 51(6):427–433. https://doi.org/10.1016/j.ceca.2012.02.001

Article  PubMed  PubMed Central  Google Scholar 

Guo T, Gillespie D, Fill M (2012) Ryanodine receptor current amplitude controls Ca2+ sparks in cardiac muscle. Circ Res 111(1):28–36. https://doi.org/10.1161/CIRCRESAHA.112.265652

Article  PubMed  PubMed Central  Google Scholar 

Guo T, Nani A, Shonts S, Perryman M, Chen H, Shannon T, Gillespie D, Fill M (2013) Sarcoplasmic reticulum K(+) (TRIC) channel does not carry essential countercurrent during Ca(2+) release. Biophys J 105(5):1151–1160. https://doi.org/10.1016/j.bpj.2013.07.042

Article  PubMed  PubMed Central  Google Scholar 

Guo W, Wei J, Estillore JP, Zhang L, Wang R, Sun B, Chen SRW (2021) RyR2 disease mutations at the C-terminal domain intersubunit interface alter closed-state stability and channel activation. J Biol Chem 297(1):100808. https://doi.org/10.1016/j.jbc.2021.100808

Article  PubMed  PubMed Central  Google Scholar 

Györke I, Hester N, Jones LR, Györke S (2004) The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys J 86(4):2121–2128

Article  PubMed  PubMed Central  Google Scholar 

January CT, Fozzard HA (1988) Delayed afterdepolarizations in heart muscle: mechanisms and relevance. Pharmacol Rev 40(3):219–227

PubMed  Google Scholar 

Kaftan E, Marks AR, Ehrlich BE (1996) Effects of rapamycin on ryanodine receptor/Ca(2+)-release channels from cardiac muscle. Circ Res 78(6):990–997. https://doi.org/10.1161/01.res.78.6.990

Article  PubMed  Google Scholar 

Katra RP, Laurita KR (2005) Cellular mechanism of calcium-mediated triggered activity in the heart. Circ Res 96(5):535–542. https://doi.org/10.1161/01.RES.0000159387.00749.3c

Article  PubMed  Google Scholar 

Kryshtal DO, Blackwell DJ, Egly CL, Smith AN, Batiste SM, Johnston JN, Laver DR, Knollmann BC (2021) RYR2 channel inhibition is the principal mechanism of flecainide action in CPVT. Circ Res 128(3):321–331. https://doi.org/10.1161/CIRCRESAHA.120.316819

Article  PubMed  Google Scholar 

Laver DR, O’Neill ER, Lamb GD (2004) Luminal Ca2+-regulated Mg2+ inhibition of skeletal RyRs reconstituted as isolated channels or coupled clusters. J Gen Physiol 124(6):741–758. https://doi.org/10.1085/jgp.200409092

Article  PubMed  PubMed Central  Google Scholar 

Liu MB, de Lange E, Garfinkel A, Weiss JN, Qu Z (2015) Delayed afterdepolarizations generate both triggers and a vulnerable substrate promoting reentry in cardiac tissue. Heart Rhythm 12(10):2115–2124. https://doi.org/10.1016/j.hrthm.2015.06.019

Article  PubMed  PubMed Central  Google Scholar 

Loaiza R, Benkusky NA, Powers PP, Hacker T, Noujaim S, Ackerman MJ, Jalife J, Valdivia HH (2013) Heterogeneity of ryanodine receptor dysfunction in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circ Res 112(2):298–308. https://doi.org/10.1161/CIRCRESAHA.112.274803

Article  PubMed  Google Scholar 

Lokuta AJ, Meyers MB, Sander PR, Fishman GI, Valdivia HH (1997) Modulation of cardiac ryanodine receptors by sorcin. J Biol Chem 272(40):25333–25338. https://doi.org/10.1074/jbc.272.40.25333

Article  PubMed  Google Scholar 

Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR (2000) PKA phosphorylation dissociates FKBP126 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101(4):365–376. https://doi.org/10.1016/s0092-8674(00)80847-8

Article  PubMed  Google Scholar 

Meissner G (2010) Regulation of ryanodine receptor ion channels through posttranslational modifications. Curr Top Membr 66:91–113. https://doi.org/10.1016/S1063-5823(10)66005-X

Article  PubMed  PubMed Central  Google Scholar 

Meissner G, Pasek DA, Yamaguchi N, Ramachandran S, Dokholyan NV, Tripathy A (2009) Thermodynamics of calmodulin binding to cardiac and skeletal muscle ryanodine receptor ion channels. Proteins 74(1):207–211. https://doi.org/10.1002/prot.22148

Article  PubMed  PubMed Central  Google Scholar 

Mejía-Alvarez R, Kettlun C, Ríos E, Stern M, Fill M (1999) Unitary Ca2+ current through cardiac ryanodine receptor channels under quasi-physiological ionic conditions. J Gen Physiol 113(2):177–186. https://doi.org/10.1085/jgp.113.2.177

Article  PubMed  PubMed Central  Google Scholar 

Meyers MB, Zamparelli C, Verzili D, Dicker AP, Blanck TJ, Chiancone E (1995) Calcium-dependent translocation of sorcin to membranes: Functional relevance in contractile tissue. FEBS Lett 357(3):230–234. https://doi.org/10.1016/0014-5793(94)01338-2

Article  PubMed  Google Scholar 

Mohler PJ, Schott J-J, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, Song L-S, Haurogné K, Kyndt F, Ali ME, Rogers TB, Lederer WJ, Escande D, Le Marec H, Bennett V (2003) Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421(6923):634–639. https://doi.org/10.1038/nature01335

Article  PubMed  Google Scholar 

Mukherjee S, Thomas NL, Williams AJ (2014) Insights into the gating mechanism of the ryanodine-modified human cardiac Ca2+-release channel (ryanodine receptor 2). Mol Pharmacol 86(3):318–329. https://doi.org/10.1124/mol.114.093757

Article  PubMed  Google Scholar 

Pogwizd SM, Bers DM (2002) Calcium cycling in heart failure: the arrhythmia connection. J Cardiovasc Electrophysiol 13(1):88–91. https://doi.org/10.1046/j.1540-8167.2002.00088.x

Article  PubMed  Google Scholar 

Porta M, Zima AV, Nani A, Diaz-Sylvester PL, Copello JA, Ramos-Franco J, Blatter LA, Fill M (2011) Single ryanodine receptor channel basis of caffeine’s action on Ca2+ sparks. Biophys J 100(4):931–938. https://doi.org/10.1016/j.bpj.2011.01.017

Article  PubMed  PubMed Central  Google Scholar 

Pouliquin P, Dulhunty AF (2009) Homer and the ryanodine receptor. Eur Biophys J 39(1):91–102. https://doi.org/10.1007/s00249-009-0494-1

Article  PubMed  Google Scholar 

Qin J, Valle G, Nani A, Chen H, Ramos-Franco J, Nori A, Volpe P, Fill M (2009) Ryanodine Receptor Luminal Ca2+ Regulation: Swapping Calsequestrin and Channel Isoforms. Biophys J 97(7):1961–1970. https://doi.org/10.1016/j.bpj.2009.07.030

Article  PubMed  PubMed Central  Google Scholar 

Qin J, Valle G, Nani A, Nori A, Rizzi N, Priori SG, Volpe P, Fill M (2008) Luminal Ca2+ regulation of single cardiac ryanodine receptors: insights provided by calsequestrin and its mutants. J Gen Physiol 131(4):325–334. https://doi.org/10.1085/jgp

留言 (0)

沒有登入
gif