Exploration of the Catalytic Cycle Dynamics of Vigna Radiata H+–Translocating Pyrophosphatases Through Hydrogen–Deuterium Exchange Mass Spectrometry

Anashkin VA, Baykov AA (2021) A lumenal loop associated with catalytic asymmetry in plant vacuolar H(+)-translocating pyrophosphatase. Int J Mol Sci. https://doi.org/10.3390/ijms222312902

Article  PubMed  PubMed Central  Google Scholar 

Asaoka M, Segami S, Maeshima M (2014) Identification of the critical residues for the function of vacuolar H(+)-pyrophosphatase by mutational analysis based on the 3D structure. J Biochem 156:333–344. https://doi.org/10.1093/jb/mvu046

Article  CAS  PubMed  Google Scholar 

Bao A-K, Wang S-M, Wu G-Q, Xi J-J, Zhang J-L, Wang C-M (2009) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176:232–240. https://doi.org/10.1016/j.plantsci.2008.10.009

Article  CAS  Google Scholar 

Belogurov GA, Lahti R (2002) A lysine substitute for K+. A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. J Biol Chem 277:49651–49654. https://doi.org/10.1074/jbc.M210341200

Article  CAS  PubMed  Google Scholar 

Craig R, Cortens JP, Beavis RC (2004) Open source system for analyzing, validating, and storing protein identification data. J Proteome Res 3:1234–1242. https://doi.org/10.1021/pr049882h

Article  CAS  PubMed  Google Scholar 

Engen JR (2009) Analysis of protein conformation and dynamics by hydrogen/deuterium exchange MS. Anal Chem 81:7870–7875. https://doi.org/10.1021/ac901154s

Article  CAS  PubMed  PubMed Central  Google Scholar 

Etxeberria E, Pozueta-Romero J, Gonzalez P (2012) In and out of the plant storage vacuole. Plant Sci 190:52–61. https://doi.org/10.1016/j.plantsci.2012.03.010

Article  CAS  PubMed  Google Scholar 

Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. Febs Lett 581:2204–2214. https://doi.org/10.1016/j.febslet.2007.03.050

Article  CAS  PubMed  Google Scholar 

Hedrich R, Kurkdjian A, Guern J, Flugge UI (1989) Comparative studies on the electrical properties of the H+ translocating ATPase and pyrophosphatase of the vacuolar-lysosomal compartment. EMBO J 8:2835–2841

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsiao YY, Van RC, Hung SH, Lin HH, Pan RL (2004) Roles of histidine residues in plant vacuolar H(+)-pyrophosphatase. Biochim Biophys Acta 1608:190–199. https://doi.org/10.1016/j.bbabio.2004.01.001

Article  CAS  PubMed  Google Scholar 

Hsiao YY, Pan YJ, Hsu SH, Huang YT, Liu TH, Lee CH et al (2007) Functional roles of arginine residues in mung bean vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1767:965–973. https://doi.org/10.1016/j.bbabio.2007.04.007

Article  CAS  PubMed  Google Scholar 

Hsu SH, Lo YY, Liu TH, Pan YJ, Huang YT, Sun YJ et al (2015) Substrate-induced changes in domain interaction of vacuolar H(+)-pyrophosphatase. J Biol Chem 290:1197–1209. https://doi.org/10.1074/jbc.M114.568139

Article  CAS  PubMed  Google Scholar 

Huang YT, Liu TH, Chen YW, Lee CH, Chen HH, Huang TW et al (2010) Distance variations between active sites of H(+)-pyrophosphatase determined by fluorescence resonance energy transfer. J Biol Chem 285:23655–23664. https://doi.org/10.1074/jbc.M110.134916

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang L, Phillips TE, Hamm CA, Drozdowicz YM, Rea PA, Maeshima M et al (2001) The protein storage vacuole: a unique compound organelle. J Cell Biol 155:991–1002. https://doi.org/10.1083/jcb.200107012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kan ZY, Ye X, Skinner JJ, Mayne L, Englander SW (2019) ExMS2: an integrated solution for hydrogen-deuterium exchange mass spectrometry data analysis. Anal Chem 91:7474–7481. https://doi.org/10.1021/acs.analchem.9b01682

Article  CAS  PubMed  Google Scholar 

Kellosalo J, Kajander T, Kogan K, Pokharel K, Goldman A (2012) The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Science 337:473–476. https://doi.org/10.1126/science.1222505

Article  CAS  PubMed  Google Scholar 

Khadilkar AS, Yadav UP, Salazar C, Shulaev V, Paez-Valencia J, Pizzio GA et al (2016) Constitutive and companion cell-specific overexpression of AVP1, encoding a proton-pumping pyrophosphatase, enhances biomass accumulation, phloem loading, and long-distance transport. Plant Physiol 170:401–414. https://doi.org/10.1104/pp.15.01409

Article  CAS  PubMed  Google Scholar 

Lee CH, Pan YJ, Huang YT, Liu TH, Hsu SH, Lee CH et al (2011) Identification of essential lysines involved in substrate binding of vacuolar H+-pyrophosphatase. J Biol Chem 286:11970–11976. https://doi.org/10.1074/jbc.M110.190215

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li KM, Wilkinson C, Kellosalo J, Tsai JY, Kajander T, Jeuken LJ et al (2016) Membrane pyrophosphatases from Thermotoga maritima and Vigna radiata suggest a conserved coupling mechanism. Nat Commun 7:13596. https://doi.org/10.1038/ncomms13596

Article  PubMed  PubMed Central  Google Scholar 

Lin SM, Tsai JY, Hsiao CD, Huang YT, Chiu CL, Liu MH et al (2012) Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 484:399–403. https://doi.org/10.1038/nature10963

Article  CAS  PubMed  Google Scholar 

Liu S, Zheng L, Xue Y, Zhang Q, Wang L, Shou H (2010) Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in Rice. J Plant Biol 53:444–452. https://doi.org/10.1007/s12374-010-9135-6

Article  CAS  Google Scholar 

Luoto HH, Belogurov GA, Baykov AA, Lahti R, Malinen AM (2011) Na+-translocating membrane pyrophosphatases are widespread in the microbial world and evolutionarily precede H+-translocating pyrophosphatases. J Biol Chem 286:21633–21642. https://doi.org/10.1074/jbc.M111.244483

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maeshima M (2000) Vacuolar H(+)-pyrophosphatase. Biochim Biophys Acta 1465:37–51

Article  CAS  PubMed  Google Scholar 

Manabe F, Shoun H, Wakagi T (2011) Conserved residues in membrane-bound acid pyrophosphatase from Sulfolobus tokodaii, a thermoacidophilic archaeon. Extremophiles 15:359–364. https://doi.org/10.1007/s00792-011-0367-2

Article  CAS  PubMed  Google Scholar 

Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102. https://doi.org/10.1093/jxb/erl183

Article  CAS  PubMed  Google Scholar 

Mimura H, Nakanishi Y, Maeshima M (2005) Oligomerization of H(+)-pyrophosphatase and its structural and functional consequences. Biochim Biophys Acta 1708:393–403. https://doi.org/10.1016/j.bbabio.2005.05.004

Article  CAS  PubMed  Google Scholar 

Nakanishi Y, Saijo T, Wada Y, Maeshima M (2001) Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J Biol Chem 276:7654–7660. https://doi.org/10.1074/jbc.M009743200

Article  CAS  PubMed  Google Scholar 

Segami S, Nakanishi Y, Sato MH, Maeshima M (2010) Quantification, organ-specific accumulation and intracellular localization of type II H(+)-pyrophosphatase in Arabidopsis thaliana. Plant Cell Physiol 51:1350–1360. https://doi.org/10.1093/pcp/pcq096

Article  CAS  PubMed  Google Scholar 

Serrano A, Perez-Castineira JR, Baltscheffsky M, Baltscheffsky H (2007) H+-PPases: yesterday, today and tomorrow. IUBMB Life 59:76–83. https://doi.org/10.1080/15216540701258132

Article  CAS  PubMed  Google Scholar 

Tsai JY, Tang KZ, Li KM, Hsu BL, Chiang YW, Goldman A et al (2019) Roles of the hydrophobic gate and exit channel in vigna radiata pyrophosphatase ion translocation. J Mol Biol 431:1619–1632. https://doi.org/10.1016/j.jmb.2019.03.009

Article  CAS  PubMed  Google Scholar 

Vidilaseris K, Kiriazis A, Turku A, Khattab A, Johansson NG, Leino TO et al (2019) Asymmetry in catalysis by Thermotoga maritima membrane-bound pyrophosphatase demonstrated by a nonphosphorus allosteric inhibitor. Sci Adv 5:eaav7574. https://doi.org/10.1126/sciadv.aav7574

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang SJ, Jiang SS, Hsiao YY, Van RC, Pan YJ, Pan RL (2004) Thermoinactivation analysis of vacuolar H(+)-pyrophosphatase. Biochim Biophys Acta 1656:88–95. https://doi.org/10.1016/j.bbabio.2004.02.001

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif