The in silico identification of novel broad-spectrum antidotes for poisoning by organophosphate anticholinesterases

Tucker J (2007) War of nerves: chemical warfare from World War I to Al-Qaeda. Reprint edition. Anchor, New York

Google Scholar 

Costanzi S, Machado J-H, Mitchell M (2018) Nerve agents: what they are, how they work, how to counter them. ACS Chem Neurosci 9(5):873–885

Article  CAS  PubMed  Google Scholar 

King AM, Aaron CK (2015) Organophosphate and carbamate poisoning. Emerg Med Clin 33(1):133–151

Article  Google Scholar 

Clement J (1979) Efficacy of pro-PAM (n-methyl-1, 6-dihydropyridine-2-carbaldoxime hydrochloride) as a prophylaxis against organophosphate poisoning. Toxicol Appl Pharmacol 47(2):305–311

Article  CAS  PubMed  Google Scholar 

Kuca K, Cabal J, Jun D, Kassa J, Bartosova L, Kunesova G, Dohnal V (2005) Strategy for the development of new acetylcholinesterase reactivators—antidotes used for treatment of nerve agent poisonings. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 149(2):429–31

Article  CAS  PubMed  Google Scholar 

Skovira JW, O’Donnell JC, Koplovitz I, Kan RK, McDonough JH, Shih T-M (2010) Reactivation of brain acetylcholinesterase by monoisonitrosoacetone increases the therapeutic efficacy against nerve agents in Guinea pigs. Chemico-biol interact 187(1–3):318–324

Article  CAS  Google Scholar 

Moshiri M, Darchini-Maragheh E, Balali-Mood M (2012) Advances in toxicology and medical treatment of chemical warfare nerve agents. DARU J Pharm Sci 20:1–24

Article  Google Scholar 

Chambers JE, Meek EC, Chambers HW (2016) Novel brain-penetrating oximes for reactivation of cholinesterase inhibited by sarin and VX surrogates. Ann NY Acad Sci 1374(1):52–58

Article  CAS  PubMed  Google Scholar 

Chambers JE, Chambers HW, Funck KE, Meek EC, Pringle RB, Ross MK (2016) Efficacy of novel phenoxyalkyl pyridinium oximes as brain-penetrating reactivators of cholinesterase inhibited by surrogates of sarin and VX. Chemico-Biol Interact 259(Pt B):154–159. https://doi.org/10.1016/j.cbi.2016.07.004

Article  CAS  Google Scholar 

Chambers JE, Chambers HW, Meek EC, Pringle RB (2013) Testing of novel brain-penetrating oxime reactivators of acetylcholinesterase inhibited by nerve agent surrogates. Chemico-Biol Interact 203(1):135–138. https://doi.org/10.1016/j.cbi.2012.10.017

Article  CAS  Google Scholar 

Chambers J, Wiygul S, Harkness J, Chambers H (1988) Effects of acute paraoxon and atropine exposures on retention of shuttle avoidance-behavior in rats. Neurosci Res Commun 3(2):85–92

CAS  Google Scholar 

Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

Article  CAS  PubMed  Google Scholar 

Chambers JE, Chambers HW, Meek EC, Pringle RB (2013) Testing of novel brain-penetrating oxime reactivators of acetylcholinesterase inhibited by nerve agent surrogates. Chemico-biol Interact 203(1):135–138

Article  CAS  Google Scholar 

Wilson C, Cooper NJ, Briggs ME, Cooper AI, Adams DJ (2018) Investigating the breakdown of the nerve agent simulant methyl paraoxon and chemical warfare agents GB and VX using nitrogen containing bases. Org Biomol Chem 16(47):9285–9291

Article  CAS  PubMed  Google Scholar 

Chaubey K, Alam SI, Waghmare CK, Singh L, Srivastava N, Bhattacharya BK (2019) Differential proteome analysis of rat plasma after diisopropyl fluorophosphate (DFP) intoxication, a surrogate of nerve agent sarin. Chemico-Biol Interact 298:66–71

Article  CAS  Google Scholar 

Meng F, Xi Y, Huang J, Ayers PW (2021) A curated diverse molecular database of blood–brain barrier permeability with chemical descriptors. Sci Data. https://doi.org/10.1038/s41597-021-01069-5

Article  PubMed  PubMed Central  Google Scholar 

Wang W, Kim MT, Sedykh A, Zhu H (2015) Developing enhanced blood–brain barrier permeability models: integrating external bio-assay data in QSAR modeling. Pharm Res 32:3055–3065

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ooms F, Weber P, Carrupt P-A, Testa B (2002) A simple model to predict blood–brain barrier permeation from 3d molecular fields. Biochim Biophys Acta Mol Basis Dis 1587(2–3):118–125

Article  CAS  Google Scholar 

Mensch J, Jaroskova L, Sanderson W, Melis A, Mackie C, Verreck G, Brewster ME, Augustijns P (2010) Application of Pampa-models to predict BBB permeability including efflux ratio, plasma protein binding and physicochemical parameters. Int J Pharm 395(1–2):182–197

Article  CAS  PubMed  Google Scholar 

Plisson F, Piggott AM (2019) Predicting blood–brain barrier permeability of marine-derived kinase inhibitors using ensemble classifiers reveals potential hits for neurodegenerative disorders. Mar Drugs 17(2):81

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao YH, Abraham MH, Ibrahim A, Fish PV, Cole S, Lewis ML, Groot MJ, Reynolds DP (2007) Predicting penetration across the blood–brain barrier from simple descriptors and fragmentation schemes. J Chem Inf Model 47(1):170–175

Article  CAS  PubMed  Google Scholar 

Li H, Yap CW, Ung CY, Xue Y, Cao ZW, Chen YZ (2005) Effect of selection of molecular descriptors on the prediction of blood–brain barrier penetrating and nonpenetrating agents by statistical learning methods. J Chem Inf Model 45(5):1376–1384

Article  CAS  PubMed  Google Scholar 

Landrum G (2013) Rdkit documentation. Release 1(1—-79):4

Google Scholar 

Thakur A, Patwa J, Sharma A, Flora SJ (2022) Synthesis, molecular docking, BSA, and in vitro reactivation study of imidazopyridine oximes against paraoxon inhibited acetylcholinesterase. Med Chem 18(2):273–287

Article  CAS  PubMed  Google Scholar 

Bhattacharjee KA, Musilek K, Kuca K (2013) In silico pharmacophore modeling on known pyridinium oxime reactivators of cyclosarin (GF) inhibited ache to aid discovery of potential, more efficacious novel non-oxime reactivators. Curr Comput Aided Drug Des 9(3):402–411

Article  CAS  PubMed  Google Scholar 

Bhattacharjee AK, Marek E, Le HT, Gordon RK (2012) Discovery of non-oxime reactivators using an in silico pharmacophore model of oxime reactivators of op-inhibited acetylcholinesterase. Eur J Med Chem 49:229–238

Article  CAS  PubMed  Google Scholar 

Bhattacharjee KA, Kuca K, Musilek K, Gordon KR (2012) An in silico stereo-electronic comparison of conventional pyridinium oximes and k-oximes for organophosphate (OP) poisoning. Med Chem 8(2):230–245

Article  CAS  PubMed  Google Scholar 

Lo R, Chandar NB, Kesharwani MK, Jain A, Ganguly B (2013) In silico studies in probing the role of kinetic and structural effects of different drugs for the reactivation of tabun-inhibited ache. PLoS ONE 8(12):79591

Article  Google Scholar 

Petroianu G, Lorke D (2008) Pyridinium oxime reactivators of cholinesterase inhibited by diisopropyl-fluorophosphate (DFP): predictive value of in-vitro testing for in vivo efficacy. Mini Rev Med Chem 8(13):1328–1342

Article  CAS  PubMed  Google Scholar 

Lugokenski TH, Gubert P, Bueno DC, Nogara PA, Aquino Saraiva R, Barcelos RP, Carratu VS, Bresolin L, Vargas Barbosa NB, Pereira ME et al (2012) Effect of different oximes on rat and human cholinesterases inhibited by methamidophos: a comparative in vitro and in silico study. Basic Clin Pharmacol Toxicol 111(6):362–370

Article  CAS  PubMed  Google Scholar 

Ho TK (1995) Random decision forests. In: Proceedings of 3rd international conference on document analysis and recognition, vol 1, pp. 278–282. IEEE

Berrar D (2018) Bayes’ theorem and naive Bayes classifier. Encyclop Bioinform Comput Biol ABC Bioinform 403:412

Google Scholar 

Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232

Article  Google Scholar 

Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y (2017) LightGBM: a highly efficient gradient boosting decision tree. In: Advances in neural information processing systems, vol 30

Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016, pp 785–794

Nembrini S, König IR, Wright MN (2018) The revival of the Gini importance? Bioinformatics 34(21):3711–3718

Article  CAS  PubMed  PubMed Central  Google Scholar 

MacQueen I (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley symposium on mathematical statistics problems, 1967, pp 281–297

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

Google Scholar 

Mukherjee S, Gupta RD (2020) Organophosphorus nerve agents: types, toxicity, and treatments. J Toxicol 2020:3007984. https://doi.org/10.1155/2020/3007984

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar R, Sharma A, Alexiou A, Bilgrami AL, Kamal MA, Ashraf GM (2022) DeePred-BBB: a blood brain barrier permeability prediction model with improved accuracy. Front Neurosci 16:858126

Article  PubMed  PubMed Central  Google Scholar 

Yuan Y, Zheng F, Zhan C-G (2018) Improved prediction of blood–brain barrier permeability through machine learning with combined use of molecular property-based descriptors and fingerprints. AAPS J 20:1–10

Article  Google Scholar 

Sakiyama H, Fukuda M, Okuno T (2021) Prediction of blood–brain barrier penetration (BBBP) based on molecular descriptors of the free-form and in-blood-form datasets. Molecules 26(24):7428

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif