TeM-DTBA: time-efficient drug target binding affinity prediction using multiple modalities with Lasso feature selection

Gonzalez MW, Kann MG (2012) Chapter 4: Protein interactions and disease. PLoS Comput Biol 8(12):e1002819. https://doi.org/10.1371/journal.pcbi.1002819

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mamoshina P et al (2018) Machine learning on human muscle transcriptomic data for biomarker discovery and tissue-specific drug target identification. Front Genet 9:242. https://doi.org/10.3389/fgene.2018.00242

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xuan P et al (2019) Gradient boosting decision tree-based method for predicting interactions between target genes and drugs. Front Genet 10:459. https://doi.org/10.3389/fgene.2019.00459

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paul SM et al (2010) How to improve r & d productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discovery 9(3):203–214. https://doi.org/10.1038/nrd3078

Article  CAS  PubMed  Google Scholar 

Wang L et al (2021) Nmfcda: Combining randomization-based neural network with non-negative matrix factorization for predicting circrna-disease association. Appl Soft Comput 110:107629. https://doi.org/10.1016/j.asoc.2021.107629

Article  Google Scholar 

Wang L et al (2021) Sganrda: semi-supervised generative adversarial networks for predicting circrna-disease associations. Briefings Bioinform 22(5):bbab028. https://doi.org/10.1093/bib/bbab028

Article  CAS  Google Scholar 

Wang L et al (2017) An ensemble approach for large-scale identification of protein-protein interactions using the alignments of multiple sequences. Oncotarget 8(3):5149. https://doi.org/10.18632/oncotarget.14103

Article  PubMed  Google Scholar 

Zhu S, Bing J, Min X, Lin C, Zeng X (2018) Prediction of drug-gene interaction by using metapath2vec. Front Genet 9:248. https://doi.org/10.3389/fgene.2018.00248

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo H et al (2021) Biomedical data and computational models for drug repositioning: a comprehensive review. Brief Bioinform 22(2):1604–1619. https://doi.org/10.1093/bib/bbz176

Article  CAS  PubMed  Google Scholar 

El-Behery H, Attia A-F, El-Fishawy N, Torkey H (2021) Efficient machine learning model for predicting drug-target interactions with case study for covid-19. Comput Biol Chem 93:107536. https://doi.org/10.1021/ci00057a005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wen M et al (2017) Deep-learning-based drug-target interaction prediction. J Proteome Res 16(4):1401–1409. https://doi.org/10.1021/acs.jproteome.6b00618

Article  CAS  PubMed  Google Scholar 

Kairys V, Baranauskiene L, Kazlauskiene M, Matulis D, Kazlauskas E (2019) Binding affinity in drug design: experimental and computational techniques. Expert Opin Drug Discov 14(8):755–768. https://doi.org/10.1080/17460441.2019.1623202

Article  CAS  PubMed  Google Scholar 

Chen R, Liu X, Jin S, Lin J, Liu J (2018) Machine learning for drug-target interaction prediction. Molecules 23(9):2208. https://doi.org/10.1186/s12911-020-1052-0

Article  PubMed  PubMed Central  Google Scholar 

Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V (2015) Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 55(2):263–274. https://doi.org/10.1021/ci500747n

Article  CAS  PubMed  Google Scholar 

Dong J, Zhao M, Liu Y, Su Y, Zeng X (2022) Deep learning in retrosynthesis planning: datasets, models and tools. Briefing Bioinform 23(1):bbab391. https://doi.org/10.1093/bib/bbab391

Article  CAS  Google Scholar 

Kar S, Roy K (2011) Development and validation of a robust qsar model for prediction of carcinogenicity of drugs. Indian Journal of Biochemistry and Biophysics48(2):111–22. http://nopr.niscpr.res.in/handle/123456789/11614

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

Article  CAS  PubMed  Google Scholar 

Baltrušaitis T, Ahuja C, Morency L-P (2018) Multimodal machine learning: A survey and taxonomy. IEEE Trans Pattern Anal Mach Intell 41(2):423–443. https://doi.org/10.1109/TPAMI.2018.2798607

Article  PubMed  Google Scholar 

Lan W, Wang J, Li M, Wu F-X, Pan Y (2015) Predicting drug-target interaction based on sequence and structure information. IFAC-PapersOnLine 48(28):12–16. https://doi.org/10.1016/j.ifacol.2015.12.092

Article  Google Scholar 

He T, Heidemeyer M, Ban F, Cherkasov A, Ester M (2017) Simboost: a read-across approach for predicting drug-target binding affinities using gradient boosting machines. J Cheminform 9(1):1–14. https://doi.org/10.1186/s13321-017-0209-z

Article  CAS  Google Scholar 

Liyaqat T, Ahmad T, Saxena C (2022) A methodology for the prediction of drug target interaction using CDK descriptors. CoRRabs/2210.11482. https://doi.org/10.48550/arXiv.2210.11482

Pahikkala T et al (2015) Toward more realistic drug-target interaction predictions. Brief Bioinform 16(2):325–337. https://doi.org/10.1093/bib/bbu010

Article  CAS  PubMed  Google Scholar 

Karimi M, Wu D, Wang Z, Shen Y (2019) Deepaffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 35(18):3329–3338. https://doi.org/10.1093/bioinformatics/btz111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao L, Wang J, Pang L, Liu Y, Zhang J (2020) Gansdta: Predicting drug-target binding affinity using gans. Front Genet 10:1243. https://doi.org/10.3389/fgene.2019.01243

Article  CAS  PubMed  PubMed Central  Google Scholar 

Öztürk H, Özgür A, Ozkirimli E (2018) Deepdta: deep drug-target binding affinity prediction. Bioinformatics 34(17):i821–i829. https://doi.org/10.1093/bioinformatics/bty593

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Zhou G, Liu S, Jiang J-Y, Wang W (2021) Drug-target interaction prediction with graph attention networks. arXiv preprint arXiv:2107.06099. https://doi.org/10.48550/arXiv.2107.06099

Zhao, Q., Xiao, F., Yang, M., Li, Y. & Wang, J. Yoo, I., Bi, J. & Hu, X. (eds) Attentiondta: prediction of drug-target binding affinity using attention model. (eds Yoo, I., Bi, J. & Hu, X.) 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019, San Diego, CA, USA, November 18-21, 2019, 64–69 (IEEE 2019). https://doi.org/10.1109/BIBM47256.2019.8983125

Lin X (2020) Deepgs: Deep representation learning of graphs and sequences for drug-target binding affinity prediction. arXiv preprint arXiv:2003.13902. https://arxiv.org/abs/2003.13902

Thafar MA et al (2022) Affinity2vec: drug-target binding affinity prediction through representation learning, graph mining, and machine learning. Sci Rep 12(1):1–18. https://doi.org/10.1038/s41598-022-08787-9

Article  CAS  Google Scholar 

Shin B, Park S, Kang K, Ho JC, Doshi-Velez F et al (eds) (2019) Self-attention based molecule representation for predicting drug-target interaction. (eds Doshi-Velez, F. et al.) , Vol. 106 of Proceedings of Machine Learning Research, 230–248 (PMLR). http://proceedings.mlr.press/v106/shin19a.html

Yang X et al (2022) Modality-dta: Multimodality fusion strategy for drug-target affinity prediction. IEEE/ACM Trans Comput Biol Bioinf. https://doi.org/10.1109/TCBB.2022.3205282

Article  Google Scholar 

Song T et al (2022) Deepfusion: A deep learning based multi-scale feature fusion method for predicting drug-target interactions. Methods 204:269–277. https://doi.org/10.1016/j.ymeth.2022.02.007

Article  CAS  PubMed  Google Scholar 

Tang J et al (2014) Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis. J Chem Inf Model 54(3):735–743. https://doi.org/10.1021/ci400709d

Article  CAS  PubMed  Google Scholar 

Davis MI et al (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 29(11):1046–1051. https://doi.org/10.1038/nbt.1990

Article  CAS  PubMed  Google Scholar 

Weininger D (1988) Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules. J Chem Inform Comput Sci 28(1):31–36. https://doi.org/10.1021/ci00057a005

Article  CAS  Google Scholar 

Liu, F., Ren, X., Zhang, Z., Sun, X. & Zou, Y. Scott, D., Bel, N. & Zong, C. (eds) Rethinking skip connection with layer normalization. (eds Scott, D., Bel, N. & Zong, C.) Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020, 3586–3598 (International Committee on Computational Linguistics, 2020). https://doi.org/10.18653/v1/2020.coling-main.320

He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. CoRRabs/1512.03385. http://arxiv.org/abs/1512.03385.1512.03385

Xia F et al (2018) Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinform 19(18):71–79. https://doi.org/10.1186/s12859-018-2509-3

Article  CAS  Google Scholar 

Jaeger S, Fulle S, Turk S (2018) Mol2vec: unsupervised machine learning approach with chemical intuition. J Chem Inf Model 58(1):27–35. https://doi.org/10.1021/acs.jcim.7b00616

Article  CAS  PubMed  Google Scholar 

Dong J et al (2015) Chemdes: an integrated web-based platform for molecular descriptor and fingerprint computation. J Cheminform 7(1):1–10. https://doi.org/10.1186/s13321-015-0109-z

Article  CAS  Google Scholar 

Yap CW (2011) Padel-descriptor: An open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32(7):1466–1474. https://doi.org/10.1002/jcc.21707

Article  CAS 

留言 (0)

沒有登入
gif