Insight into the Physiological and Molecular Crosstalk During Bacterial-Fungal Interactions

Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50. https://doi.org/10.1038/nrmicro2832.

Article  CAS  PubMed  Google Scholar 

Braga RM, Dourado MN, Araújo WL. Microbial interactions: ecology in a molecular perspective. Braz J Microbiol. 2016;47(Suppl 1):86–98. https://doi.org/10.1016/j.bjm.2016.10.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kobayashi DY, Crouch JA. Bacterial/fungal interactions: from pathogens to mutualistic endosymbionts. Annu Rev Phytopathol. 2009;47:63–82. https://doi.org/10.1146/annurev-phyto-080508-081729.

Article  CAS  PubMed  Google Scholar 

Partida-Martinez LP, Hertweck C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature. 2005;437:884–8. https://doi.org/10.1038/nature03997.

Article  CAS  PubMed  Google Scholar 

Lackner G, Mobius N, Scherlach K, Partida-Martinez LP, Winkler R, Schmitt I, et al. Global distribution and evolution of a toxinogenic Burkholderia-Rhizopus Symbiosis. Appl Environ Microbiol. 2009;75:2982–6. https://doi.org/10.1128/AEM.01765-08.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lackner G, Moebius N, Hertweck C. Endofungal bacterium controls its host by an hrp type III secretion system. ISME J. 2011;5:252–61. https://doi.org/10.1038/ismej.2010.126.

Article  CAS  PubMed  Google Scholar 

Ma YJ, Zheng LP, Wang JW. Bacteria associated with Shiraia fruiting bodies influence fungal production of hypocrellin A. Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.02023.

Ruíz-Sánchez M, Armada E, Muñoz Y, García de Salamone IE, Aroca R, Ruíz-Lozano JM, et al. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol. 2011;168:1031–7. https://doi.org/10.1016/j.jplph.2010.12.019.

Article  CAS  PubMed  Google Scholar 

Kumar A, Danish Yaseen Naqvi S, Kaushik P, Khojah E, Amir M, Alam P, et al. Rhizophagus irregularis and nitrogen fixing Azotobacter enhances greater yam (Dioscorea alata) biochemical profile and upholds yield under reduced fertilization. Saudi J Biol Sci. 2022;29:3694–703. https://doi.org/10.1016/j.sjbs.2022.02.041.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mosse B. Honey-coloured, sessile Endogone spores: II. Changes in fine structure during spore development. Arch Mikrobiol. 1970;74:129–45. https://doi.org/10.1007/BF00446901.

Article  Google Scholar 

Wilkes TI, Warner DJ, Edmonds-Brown V, Davies KG, Denholm I. The Tripartite Rhizobacteria-AM fungal-host plant relationship in winter wheat: impact of multi-species inoculation, tillage regime and naturally occurring rhizobacteria species. Plants. 2021;10:1357. https://doi.org/10.3390/plants10071357.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nanjundappa A, Bagyaraj DJ, Saxena AK, Kumar M, Chakdar H. Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biol Biotechnol. 2019;6:23. https://doi.org/10.1186/s40694-019-0086-5.

Article  PubMed  PubMed Central  Google Scholar 

Wang Y-H, Hou L-L, Wu X-Q, Zhu M-L, Dai Y, Zhao Y-J. Mycorrhiza helper bacterium Bacillus pumilus HR10 improves growth and nutritional status of Pinus thunbergii by promoting mycorrhizal proliferation. Tree Physiol. 2022;42:907–18. https://doi.org/10.1093/treephys/tpab139.

Article  CAS  PubMed  Google Scholar 

Partida-Martinez LP, Monajembashi S, Greulich K-O, Hertweck C. Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr Biol. 2007;17:773–7. https://doi.org/10.1016/j.cub.2007.03.039.

Article  CAS  PubMed  Google Scholar 

Moebius N, Üzüm Z, Dijksterhuis J, Lackner G, Hertweck C. Active invasion of bacteria into living fungal cells. Elife. 2014;3.https://doi.org/10.7554/eLife.03007.

Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P. Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol. 2001;67:725–32. https://doi.org/10.1128/AEM.67.2.725-732.2001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Venice F, Ghignone S, Salvioli di Fossalunga A, Amselem J, Novero M, Xianan X, et al. At the nexus of three kingdoms: the genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant, endobacterial and fungal interactions. Environ Microbiol. 2020;22:122–41. https://doi.org/10.1111/1462-2920.14827. This article describes the genome analysis of Gigaspora margarita – a crucial species of mycorrhizal fungus that harbors endohyphal bacteria.

Deveau A, Brulé C, Palin B, Champmartin D, Rubini P, Garbaye J, et al. Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8. Environ Microbiol Rep. 2010;2:560–8. https://doi.org/10.1111/j.1758-2229.2010.00145.x.

Article  CAS  PubMed  Google Scholar 

Brulé C, Frey-Klett P, Pierrat J, Courrier S, Gérard F, Lemoine M, et al. Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and the effects of a mycorrhiza helper Pseudomonas fluorescens. Soil Biol Biochem. 2001;33:1683–94. https://doi.org/10.1016/S0038-0717(01)00090-6.

Article  Google Scholar 

Kong EF, Tsui C, Kucharíková S, Andes D, Van Dijck P, Jabra-Rizk MA. Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans biofilm matrix. MBio. 2016;7. https://doi.org/10.1128/mBio.01365-16.

Lin YJ, Alsad L, Vogel F, Koppar S, Nevarez L, Auguste F, et al. Interactions between Candida albicans and Staphylococcus aureus within mixed species biofilms. Bios. 2013;84:30–9. https://doi.org/10.1893/0005-3155-84.1.30.

Article  Google Scholar 

Krause J, Geginat G, Tammer I. Prostaglandin E2 from Candida albicans stimulates the growth of Staphylococcus aureus in mixed biofilms. PLoS One. 2015;10: e0135404. https://doi.org/10.1371/journal.pone.0135404.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silverman RJ, Nobbs AH, Vickerman MM, Barbour ME, Jenkinson HF. Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communities. Infect Immun. 2010;78:4644–52. https://doi.org/10.1128/IAI.00685-10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Sullivan JM, Jenkinson HF, Cannon RD. Adhesion of Candida albicans to oral streptococci is promoted by selective adsorption of salivary proteins to the streptococcal cell surface. Microbiology. 2000;146:41–8. https://doi.org/10.1099/00221287-146-1-41.

Article  PubMed  Google Scholar 

Kim D, Sengupta A, Niepa THR, Lee B-H, Weljie A, Freitas-Blanco VS, et al. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Sci Rep. 2017;7:41332. https://doi.org/10.1038/srep41332.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Montelongo-Jauregui D, Saville SP, Lopez-Ribot JL. Contributions of Candida albicans dimorphism, adhesive interactions, and extracellular matrix to the formation of dual-species biofilms with Streptococcus gordonii. MBio. 2019;10. https://doi.org/10.1128/mBio.01179-19.

Peleg AY, Hogan DA, Mylonakis E. Medically important bacterial–fungal interactions. Nat Rev Microbiol. 2010;8:340–9. https://doi.org/10.1038/nrmicro2313.

Article  CAS  PubMed  Google Scholar 

Li X, Quan C-S, Yu H-Y, Fan S-D. Multiple effects of a novel compound from Burkholderia cepacia against Candida albicans. FEMS Microbiol Lett. 2008;285:250–6. https://doi.org/10.1111/j.1574-6968.2008.01238.x.

Article  CAS  PubMed  Google Scholar 

Boon C, Deng Y, Wang L-H, He Y, Xu J-L, Fan Y, et al. A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J. 2008;2:27–36. https://doi.org/10.1038/ismej.2007.76.

Article  CAS  PubMed  Google Scholar 

Deng Y, Wu J, Eberl L, Zhang L-H. Structural and functional characterization of diffusible signal factor family quorum-sensing signals produced by members of the Burkholderia cepacia complex. Appl Environ Microbiol. 2010;76:4675–83. https://doi.org/10.1128/AEM.00480-10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fritsche K, Leveau JHJ, Gerards S, Ogawa S, de Boer W, van Veen JA. Collimonas fungivorans and bacterial mycophagy. IOBC WPRS Bull. 2006;29:27.

Google Scholar 

Song C, Schmidt R, de Jager V, Krzyzanowska D, Jongedijk E, Cankar K, et al. Exploring the genomic traits of fungus-feeding bacterial genus Collimonas. BMC Genomics. 2015;16:1103. https://doi.org/10.1186/s12864-015-2289-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mela F, Fritsche K, de Boer W, van Veen JA, de Graaff LH, van den Berg M, et al. Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger. ISME J. 2011;5:1494–504. https://doi.org/10.1038/ismej.2011.29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leveau JHJ, Uroz S, de Boer W. The bacterial genus Collimonas: Mycophagy, weathering and other adaptive solutions to life in oligotrophic soil environments. Environ Microbiol. 2010;12:281–92. https://doi.org/10.1111/j.1462-2920.2009.02010.x.

Article  CAS  PubMed  Google Scholar 

Breuer O, Schultz A, Garratt LW, Turkovic L, Rosenow T, Murray CP, et al. Aspergillus infections and progression of structural lung disease in children with cystic fibrosis. Am J Respir Crit Care Med. 2020;201:688–96. https://doi.org/10.1164/rccm.201908-1585OC.

Article  CAS  PubMed  Google Scholar 

Briard B, Heddergott C, Latgé J-P. Volatile Compounds Emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. MBio. 2016;7. https://doi.org/10.1128/mBio.00219-16.

Briard B, Bomme P, Lechner BE, Mislin GLA, Lair V, Prévost M-C, et al. Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. Sci Rep. 2015;5:8220.

留言 (0)

沒有登入
gif