Symbiotic Interactions of Archaea in Animal and Human Microbiomes

•• Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, ecology and evolution of Archaea. Nature Microbiol. 2020;5(7):887–900. The paper provides an overview of the diversity, ecology, and evolution of archaea, highlighting recent advances in genomic and metagenomic techniques. The authors discuss the key features that distinguish archaea from bacteria and eukaryotes and explores the various ecological niches that archaea occupy. The authors highlight the important roles that archaea play in global nutrient cycling and discusses the evolutionary history of archaea.

Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci. 1977;74(11):5088–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Medina-Chávez NO, Travisano M. Archaeal Communities: the microbial phylogenomic frontier. Front Genet. 2022;12:693193.

Article  PubMed  PubMed Central  Google Scholar 

Rinke C, Chuvochina M, Mussig AJ, Chaumeil P-A, Davín AA, Waite DW, et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat Microbiol. 2021;6(7):946–59.

Article  CAS  PubMed  Google Scholar 

Moissl-Eichinger C, Pausan M, Taffner J, Berg G, Bang C, Schmitz RA. Archaea are interactive components of complex microbiomes. Trends Microbiol. 2018;26(1):70–85.

Article  CAS  PubMed  Google Scholar 

Cavicchioli R. Archaea: molecular and cellular biology. In: Cavicchioli R, editor. Washington, USA: ASM Press; 2007. p. 523.

Bang C, Schmitz RA. Archaea: forgotten players in the microbiome. Emerg Topics Life Sci. 2018;2(4):459–68.

Article  CAS  Google Scholar 

Flemming H-C, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol. 2019;17(4):247–60.

Article  CAS  PubMed  Google Scholar 

Belmok A, de Cena J, Kyaw C, Damé-Teixeira N. The oral archaeome: a scoping review. J Dent Res. 2020;99(6):630–43.

Article  CAS  PubMed  Google Scholar 

Koskinen K, Pausan MR, Perras AK, Beck M, Bang C, Mora M, et al. First insights into the diverse human archaeome: specific detection of archaea in the gastrointestinal tract, lung, and nose and on skin. MBio. 2017;8(6):e00824-e917.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bang C, Schmitz RA. Archaea associated with human surfaces: not to be underestimated. FEMS Microbiol Rev. 2015;39(5):631–48.

Article  CAS  PubMed  Google Scholar 

• Sun Y, Liu Y, Pan J, Wang F, Li M. Perspectives on cultivation strategies of archaea. Microbial Ecol. 2020;79:770–84. The paper reviews various cultivation strategies that have been developed to overcome the challenges of cultivating archaea, including approaches such as co-cultivation with other microorganisms, the use of specialized growth media and culture conditions, and high-throughput screening methods. The authors also discuss the potential applications of cultivated archaea in biotechnology, including the production of biofuels, biopolymers, and other useful compounds.

• Forterre P. Archaea: a goldmine for molecular biologists and evolutionists. Archaea: Methods and Protocols. Springer; 2022; 1–21. The chapter published in the book "Archaea: Methods and Protocols" in 2022 by Springer, provides an overview of the unique features and potential applications of archaea in molecular biology and evolutionary studies. The author highlights the importance of comparative genomics for understanding the evolutionary relationships between different groups of organisms and for identifying new molecular targets for biotechnological applications. The chapter also discusses the potential applications of archaea in biotechnology.

•• Hoegenauer C, Hammer HF, Mahnert A, Moissl-Eichinger C. Methanogenic archaea in the human gastrointestinal tract. Nature Reviews Gastroenterology & Hepatology. 2022:1–9. The paper reviews recent studies on the diversity and abundance of methanogenic archaea in the human gut microbiota, as well as their potential interactions with other gut microbes and the host. The authors also discuss the possible links between methanogenic archaea and various gastrointestinal disorders, including constipation, inflammatory bowel disease, and colon cancer. The paper highlights the need for further research to fully understand the role of methanogenic archaea in the gut microbiota and their potential implications for human health.

Wrede C, Dreier A, Kokoschka S, Hoppert M. Archaea in symbioses. Archaea. 2012;2012:596846.

Buee M, De Boer W, Martin F, Van Overbeek L, Jurkevitch E. The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Springer; 2009.

He Y, Hu W, Ma D, Lan H, Yang Y, Gao Y. Abundance and diversity of ammonia-oxidizing archaea and bacteria in the rhizosphere soil of three plants in the Ebinur Lake wetland. Can J Microbiol. 2017;63(7):573–82.

Article  CAS  PubMed  Google Scholar 

Lee S-H, Kim S-Y, Ding W, Kang H. Impact of elevated CO 2 and N addition on bacteria, fungi, and archaea in a marsh ecosystem with various types of plants. Appl Microbiol Biotechnol. 2015;99:5295–305.

Article  CAS  PubMed  Google Scholar 

Valentine DL. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol. 2007;5(4):316–23.

Article  CAS  PubMed  Google Scholar 

Turque AS, Batista D, Silveira CB, Cardoso AM, Vieira RP, Moraes FC, et al. Environmental shaping of sponge associated archaeal communities. PLoS One. 2010;5(12):e15774.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Durand L, Zbinden M, Cueff-Gauchard V, Duperron S, Roussel EG, Shillito B, et al. Microbial diversity associated with the hydrothermal shrimp Rimicaris exoculata gut and occurrence of a resident microbial community. FEMS Microbiol Ecol. 2009;71(2):291–303.

Article  PubMed  Google Scholar 

Margot H, Acebal C, Toril E, Amils R, Fernandez PJ. Consistent association of crenarchaeal Archaea with sponges of the genus Axinella. Mar Biol. 2002;140:739–45.

Article  CAS  Google Scholar 

Pape T, Hoffmann F, Queric N-V, von Juterzenka K, Reitner J, Michaelis W. Dense populations of Archaea associated with the demosponge Tentorium semisuberites Schmidt, 1870 from Arctic deep-waters. Polar Biol. 2006;29:662–7.

Article  Google Scholar 

Vortsepneva E, Chevaldonné P, Klyukina A, Naduvaeva E, Todt C, Zhadan A, et al. Microbial associations of shallow-water Mediterranean marine cave Solenogastres (Mollusca). PeerJ. 2021;9:e12655. https://doi.org/10.7717/peerj.12655.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hackstein JHP, van Alen TA. Methanogens in the gastro-intestinal tract of animals. In: Hackstein JHP, editor. (Endo)symbiotic Methanogenic Archaea. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010; 115–42.

Hackstein JH, Stumm CK. Methane production in terrestrial arthropods. Proc Natl Acad Sci U S A. 1994;91(12):5441–5. https://doi.org/10.1073/pnas.91.12.5441.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brauman A, Doré J, Eggleton P, Bignell D, Breznak JA, Kane MD. Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol. 2001;35(1):27–36. https://doi.org/10.1111/j.1574-6941.2001.tb00785.x.

Article  CAS  PubMed  Google Scholar 

•• Borrel G, Brugère J-F, Gribaldo S, Schmitz RA, Moissl-Eichinger C. The host-associated archaeome. Nature Rev Microbiol. 2020;18(11):622–36. https://doi.org/10.1038/s41579-020-0407-y. The authors review recent advances in our understanding of the archaeal microbiome, focusing on the various host-associated environments where archaea have been identified, including the gut, oral cavity, skin, and genital tract. They discuss the diversity of archaeal taxa that have been identified in these environments, and the potential roles that they may play in host physiology and disease.

Finlay BJ, Esteban G, Clarke KJ, Williams AG, Embley TM, Hirt RP. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett. 1994;117(2):157–61. https://doi.org/10.1111/j.1574-6968.1994.tb06758.x.

Article  CAS  PubMed  Google Scholar 

Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci. 2007;104(25):10643–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nkamga VD, Lotte R, Roger PM, Drancourt M, Ruimy R. Methanobrevibacter smithii and Bacteroides thetaiotaomicron cultivated from a chronic paravertebral muscle abscess. Clin Microbiol Infect. 2016;22(12):1008–9. https://doi.org/10.1016/j.cmi.2016.09.007.

Article  CAS  PubMed  Google Scholar 

Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci. 2008;105(43):16767–72. https://doi.org/10.1073/pnas.0808567105.

Article  PubMed  PubMed Central  Google Scholar 

Probst AJ, Auerbach AK, Moissl-Eichinger C. Archaea on human skin. PLoS One. 2013;8(6):e65388. https://doi.org/10.1371/journal.pone.0065388.

Article  CAS  PubMed  PubMed Central  Google Scholar 

•• Mafra D, Ribeiro M, Fonseca L, Regis B, Cardozo LF, Dos Santos HF, et al. Archaea from the gut microbiota of humans: Could be linked to chronic diseases? Anaerobe. 2022:102629. The paper reviews recent studies on the diversity and abundance of archaea in the human gut microbiota, as well as their potential interactions with other gut microbes and the host. The authors also discuss the possible links between archaea and chronic diseases such as inflammatory bowel disease, colorectal cancer, and metabolic disorders. The paper highlights the need for further research to fully understand the role of archaea in the gut microbiota and their potential implications for human health.

Zhu B, Wang X, Li L. Human gut microbiome: the second genome of human body. Protein Cell. 2010;1(8):718–25. https://doi.org/10.1007/s13238-010-0093-z.

Article  PubMed  PubMed Central  Google Scholar 

Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA. Methanogenic Archaea and human periodontal disease. Proc Natl Acad Sci. 2004;101(16):6176–81. https://doi.org/10.1073/pnas.0308766101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dame-Teixeira N, de Cena JA, Côrtes DA, Belmok A, dos Anjos Borges LG, Marconatto L, et al. Presence of Archaea in dental caries biofilms. Arch Oral Biol. 2020;110:104606. https://doi.org/10.1016/j.archoralbio.2019.104606.

Article  CAS  PubMed  Google Scholar 

Moissl-Eichinger C, Probst AJ, Birarda G, Auerbach A, Koskinen K, Wolf P, et al. Human age and skin physiology shape diversity and abundance of Archaea on skin. Sci Rep. 2017;7(1):4039. https://doi.org/10.1038/s41598-017-04197-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

•• Geesink P, Ettema TJG. The human archaeome in focus. Nature Microbiol. 2022;7(1):10–1. https://doi.org/10.1038/s41564-021-01031-6. The authors discuss recent studies that have used metagenomic sequencing to identify archaeal taxa in various human body sites. They highlight the diverse and often poorly characterized archaeal taxa that have been identified in these studies, and the potential roles that they may play in human health and disease. The paper also discusses the challenges associated with studying the human archaeome.

Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8. https://doi.org/10.1126/science.1110591.

Article  PubMed  PubMed Central  Google Scholar 

•Chibani CM, Mahnert A, Borrel G, Almeida A, Werner A, Brugère J-F, et al. A catalogue of 1,167 genomes from the human gut archaeome. Nature Microbiology. 2022;7(1):48–61. doi: https://doi.org/10.1038/s41564-021-01020-9.The authors used metagenomic sequencing to analyze the archaeal diversity in fecal samples from over 1,000 individuals from various geographic locations and populations. They identified over 1,100 archaeal genomes, including many previously unknown species, and performed a detailed phylogenetic analysis to classify these genomes into distinct clades. The paper also provides insights into the functional potential of the human gut archaeome, identifying genes and pathways related to various metabolic processes and highlighting the potential roles of archaea in nutrient cycling and other gut functions.

Bang C, Weidenbach K, Gutsmann T, Heine H, Schmitz RA. The intestinal archaea Methanosphaera stadtmanae and Methanobrevibacter smithii activate human dendritic cells. PLoS One. 2014;9(6):e99411. https://doi.org/10.1371/journal.pone.0099411.

Article  PubMed 

留言 (0)

沒有登入
gif