The Application Potential of Synthetic Biology in Microbial Communication

Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.

Article  CAS  PubMed  Google Scholar 

Mukherjee S, Bossier BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. 2019;17:371–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hmelo LR. Quorum sensing in marine microbial environments. Ann Rev Mar Sci. 2017;9:257–81.

Article  PubMed  Google Scholar 

Bassler BL, Losick R. Bacterially speaking. Cell. 2006;125:237–46.

Article  CAS  PubMed  Google Scholar 

Vasavi HS, Arun AB, Rekha PD. Anti-quorum sensing activity of psidium guajava l. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1. Microbiol Immunol. 2014;58:286–93.

Article  CAS  PubMed  Google Scholar 

Michele DR, Ryan YM, Ann HK. Can the natural diversity of quorum-sensing advance synthetic biology? Front Bioeng Biotechnol. 2015;3:99.

Google Scholar 

Whiteley M, Diggle SP, Greenberg EP. Bacterial quorum sensing: the progress and promise of an emerging research area. Nature. 2017;551:313–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng AP, Sabra W. Microbial production of diols as platform chemicals: recent progresses. Curr Opin Biotechnol. 2011;22:749–57.

Article  CAS  PubMed  Google Scholar 

Xue YT, Wu SB, Xu CY, Yuan BX, Yang SJ, Liu JH, et al. Research progress on the quorum sensing in the dynamic metabolic regulation (in Chinese). China Biotechnol. 2020;40:74–83.

CAS  Google Scholar 

Studier FW. Protein production by auto-induction in high density shaking cultures. Protein Expr Purif. 2005;41:207–34.

Article  CAS  PubMed  Google Scholar 

Smolke C, Silver P. Informing biological design by integration of systems and synthetic biology. Cell. 2011;144:855–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khalil AS, Collins JJ. Synthetic biology: applications come of age. Nat Rev Genet. 2010;11:367–79.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mcdaniel R, Weiss R. Advances in synthetic biology: on the path from prototypes to applications. Curr Opin Biotechnol. 2005;16:476–83.

Article  CAS  PubMed  Google Scholar 

Stahler P, Beier M, Gao X, Hoheisel JD. Another side of genomics: synthetic biology as a means for the exploitation of whole-genome sequence information. J Biotechnol. 2006;124:206–12.

Article  PubMed  Google Scholar 

Schmidt M. Diffusion of synthetic biology: a challenge to biosafety. Syst Synth Biol. 2008;2:1–6.

Article  PubMed  PubMed Central  Google Scholar 

Xiong Y, Chen DM, Yang C, Zhao GP. Progress and perspective of synthetic biology. Chin Bull Life Sci. 2011;23:826–37 (in Chinese).

Google Scholar 

Hwang IY, Tan MH, Koh E, Ho CL, Poh CL, Chang MW. Reprogramming microbes to be pathogen-seeking killers. ACS Synth Biol. 2014;3:228–37.

Article  CAS  PubMed  Google Scholar 

Raina S, Vizio DD, Odell M, Clements M, Vanhulle S, Keshavarz T. Microbial quorum sensing: a tool or a target for antimicrobial therapy? Biotechnol Appl Bioc. 2009;54:65–84.

Article  CAS  Google Scholar 

Ruby EG, Nealson KH. Symbiotic association of photobacterium fischeri with the marine luminous fish Monocentris japonica; a model of symbiosis based on bacterial studies. Biol Bull. 1976;151:574–86.

Article  CAS  PubMed  Google Scholar 

Basslerb BL, Wright M, Showalter RE, Silverman MR. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol. 1993;9:773–86.

Article  Google Scholar 

Nealson KH, Platt T, Hastings JW. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol. 1970;104(1):313–22.

Schuster M, Greenberg EP. Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BioMed Genomics. 2007;8:287.

Article  Google Scholar 

Papenfort K, Bassler BL. Quorum sensing signal–response systems in gram-negative bacteria. Nat Rev Microbiol. 2016;14:576–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gula G, Dorotkiewicz-Jach A, Korzekwa K, Valvano MA, Drulis-Kawa Z. Complex signaling networks controlling dynamic molecular changes in Pseudomonas aeruginosa biofilm. Curr Med Chem. 2019;26:1979–93.

Article  PubMed  Google Scholar 

Wu S, Liu J, Liu C, Yang A, Qiao J. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cell Mol Life Sci. 2020;77:1319–1343. This paper highlights the disruptions and manipulations of QS devices as potential clinical therapies for diseases caused by biofilm formation, antibiotic resistance, and the phage invasion.

Ryan RP, An S, Allan JH, McCarthy Y, Dow JM. The dsf family of cell–cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog. 2015;11:e1004986.

Article  PubMed  PubMed Central  Google Scholar 

Novick RP. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol. 2003;48:1429–49.

Article  CAS  PubMed  Google Scholar 

Henke JM, Bassler BL. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol. 2004;186:6902–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell. 2002;110:303–14.

Article  CAS  PubMed  Google Scholar 

Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR. Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol. 2005;3:383–96.

Article  CAS  PubMed  Google Scholar 

Sun J, Daniel R, Wagner-Döbler I, Zeng AP. Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol Biol. 2004;4:269–75.

Article  Google Scholar 

Hossain S, Boon EM. Discovery of a novel nitric oxide binding protein and nitric-oxide-responsive signaling pathway in Pseudomonas aeruginosa. ACS Infect Dis. 2017;3:454–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim J, Cha YH. Down-regulation of acetate pathway through antisense strategy in Escherichia coli: improved foreign protein production. Biotechnol Bioeng. 2003;83:841–53.

Article  CAS  PubMed  Google Scholar 

Herring CD, Glasner JD, Blattner FR. Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene. 2003;311:153–63.

Article  CAS  PubMed  Google Scholar 

Pang QX, Liang QF, Qi QS. Application of switch for synthetic biology in metabolic engineering. Biotechnol Bull. 2017;33:58–63 (in Chinese).

Google Scholar 

Gu PF, Su TY, Wang Q, Liang Q, Qi Q. Tunable switch mediated shikimate biosynthesis in an engineered non-auxotrophic Escherichia coli. Sci Rep. 2016;6:29745.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swofford CA, Dessel NV, Forbes NS. Quorum-sensing Salmonella selectively trigger protein expression within tumors. Proc Natl Acad Sci USA. 2015;112:3457–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soma Y, Hanai T. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production. Metabc Eng. 2015;30:7–15.

Article  CAS  Google Scholar 

Gupta A, Reizman IMB, Reisch CR, Prather KL. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat Biotechnol. 2017;35:273–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doong SJ, Gupta A, Prather KLJ. Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli. Proc Natl Acad Sci USA. 2018;115:2964–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui SX, Lv XQ, Wu YK, Li J, Du G, Ledesma-Amaro R, Liu L. Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis. ACS Synth Biol. 2019;8:1826–37.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif