Predatory Efficiency of Larvivorous Fish against Mosquito Larvae in Different Water Temperature Levels: Implication in Control Measure of Dengue Vector

1. WHO– World Health Organization (2020) Dengue Control: Biological Control. Sep¬tember 8th, 2020. Available at: https://www.who.int/denguecontrol/control_strategies/biological_control/en/
2. WHO– World Health Organization (2020) Dengue and Severe Dengue. March 2nd 2020. Available at: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
3. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI (2012) Refining the global spatial lim¬its of Den¬gue virus transmission by evi-dence-based consensus. PLoS Negl Trop Dis. 6(8): e1760.
4. Fan JC, Liu QY (2019) Potential impacts of climate change on Dengue fever dis-tribution using RCP scenarios in China. Adv Clim Chang Res. 10: 1–8.
5. Lozano-Fuentes S, Hayden MH, Welsh-Ro-driguez C, Ochoa-Martinez C, Tapia-San¬tos B, Bobylinski KC, Uejio CK, Ziel¬inski-Guiterez E, Monache LC, Monaghan AJ, Steinhoff DF, Eisen L (2012) The Dengue virus mosquito vec-tors Aedes aegypti at high elevation in Me’xico. Am J Trop Med Hyg. 87(5): 902–909.
6. Sayono S, Nurullita U, Sumanto D, Handoyo W (2017) Altitudinal distribu-tion of Aedes indices during dry season in the Den¬gue endemic area of Central Java Province, Indonesia. Ann Parasitol. 63(3): 213–221.
7. Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dufour I, Raghavendra K, Pinto J, Corbel V, David JP, Weetman D (2017) Contemporary status of insec-ticide resistance in the major Aedes vec-tors of arboviruses infecting humans. PLoS Negl Trop Dis. 11(7): e0005625.
8. Miraldo MC, Pecora IL (2017) Efficiency of Brazilian native ornamental fishes as mosquito larvae predators. Bol Inst Pes-ca. 43(special volume): 93–98.
9. Manna B, Aditya G, Banjere S (2011) Hab-itat heterogeneity and prey selection of Aplocheilus panchax: an indigenous lar-vivorous fish. J Vector Borne Dis. 48: 144–149.
10. Chandra G, Bhattacharjee I, Chatterjee SN, Gosh A (2008) Mosquito control by larvivorous fish. Indian J Med Res. 127(1): 13–27.
11. Lichak MR, Barber JR, Kwon YM, Fran-cis KX, Bendesky A (2022) Care and use of siamese fighting fish (Betta splen-dens) for research. Comp Med. 72(3): 169–180.
12. Manna B, Aditya G, Banerjee S (2011) Habitat heterogeneity and prey selection of Aplocheilus panchax: an indigenous larvivorous fish. J Vector Borne Dis. 48: 144–149.
13. Boltana S, Sanhueza N, Aguilar A, Gal-lardo-Escarate C, Arriagada G, Valdes JA, Soto D, Quinones RA (2017) Influ-ences of thermal environment on fish growth. Ecol Evol. 7: 6814–6825.
14. Satoto TBT, Sukendra DM, Hardiningsih I, Diptyanusa A (2019) The Influence of digestive tract length of larvivorous fish related to predation potential on Aedes aegypti larvae. Unnes J Public Health. 8(2): 139–144.
15. Sangeetha S, Devahita AA, Arathilal, Aiswarya T, Parvin MTS, Smitha MS, Anulal P, Afra A, Arun S, Asifa KP (2021) Comparative efficiency of Larvi-vorous fishes against Culex mosquitoes: Implications for biological control. Int J Mosq Res. 8(3): 16–21.
16. Lukas JL, Adrianto H, Darmanto AG (2020) Kemampuan Predasi Ikan Kepala Timah Aplocheilus panchax Jantan dan Betina Terhadap Larva Nyamuk Aedes aegypti. J Kesehat Andalas. 9(4): 387–391.
17. Mya MM, Kyi NTT, Oo NN, Aung ZZ, New CT, Myint YY, Thaung S, Maung YNM, Htun MM (2019) Pre- and Post-Intervention Study on Aedes Larvae in Water Storage Containers Adding of Na¬tive Larvivorous Fish Aplocheilus panchax in Hpa-an Township, Kayin State. Myanmar Health Sci Res J. 31(2): 99–104.
18. Revadekar JV, Hameed S, Collins D, Man¬ton M, Sheikh M, Borgaonkar HP, Kothawale DR, Adnan M, Ahmed AU, Ash¬raf J, Baidya S, Islam N, Jaya¬sing-hearachchi D, Manzoor N, Premalal KHMS, Shreshta ML (2013) Impact of altitude and latitude on changes in tem-perature extremes over South Asia dur-ing 1971–2000. Int J Climatol. 33: 199–209.
19. Permata SH, Yotopranoto S, Kusmartis-nawati K (2015) Effectiveness of Betta splendens as a biological predatory against Aedes aegypti larvae. Folia Med Indones. 51(4): 268–271.
20. Gupta S, Banerjee S (2013) Comparative as¬sessment of mosquito biocontrol effi-cien¬cy between Guppy (Poecilia reticu-lata) and Panchax minnow (Aplocheilus panchax). Bioscience Discovery. 4(1): 89–95.
21. Griffin L (2014) Laboratory evaluation of predation on mosquito larvae by Aus-tralian mangrove fish. J Vector Ecol. 39 (1): 197–203.
22. Chandrasegaran K, Sing A, Laha M, Quared S (2018) Playing it safe? Be-havioural re¬sponses of mosquito larvae encountering a fish predator. Ethol Ecol Evol. 30(1): 70–87.
23. Tuno N, Pong TV, Takagi M (2020) Cli-mate Change May Restrict the Predation Efficiency of Mesocyclops aspericornis (Copepoda: Cyclopidae) on Aedes ae-gypti (Diptera: Culicidae) Larvae. In-sects. 11 (5): 307.
24. Srikrishnan R, Hirimuthugoda N, Ra¬japak-she W (2017) Evaluation of growth per-formance and breeding habits of fighting fish (Betta splendens) under 3 diets and shelters. J Surv Fish Sci. 3(2): 50–56.
25. Morgan K (2020) Betta fish care guide: How to create the optimum environ-ment. Available at: https://modestfish.com/betta-fish-care/
26. Shah TK, Saini VP, Ojha ML, Raveeder B (2017) Effect of temperature on growth and survival of Guppy (Poecilia reticu-lata). J Exp Zool India. 20(1): 505–510.
27. Hernandez-Rodriguez M, Buckle-Ramirez LF (2010) Preference, tolerance and re-sistance responses of Poecilia sphenops Valenciennes, 1846 (Pisces: Poeciliidae) to thermal fluctuations. Lat Am J Aquat Res. 38(3): 427–437.
28. Kent M, Ojanguren AF (2015) The effect of water temperature on routine swim-ming behaviour of newborn guppies (Poe¬cilia reticulata). Biol Open. 4: 547–552.
29. Banrie (2013) Managing ammonia in fish ponds. The Fish Site. Available at: https://thefishsite.com/articles/managing-ammonia-in-fish-ponds
30. Silberbush A, Resetarits WJ (2017) Mos-quito female response to the presence of larvivorous fish does not match threat to larvae. Ecol Entomol. 42(5): 595–600.

留言 (0)

沒有登入
gif