References
1. Organization WH (2019) Vector alert: Anopheles stephensi invasion and spread: Horn of Africa, the Republic of the Sudan and surrounding geographical areas, and Sri Lanka: information note. World Health Organization.
2. Organization WH (2020) Vector-borne diseases [updated 2 March 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases.
3. Organization WH (2015) Global technical strategy for malaria 2016-2030: World Health Organization.
4. Azari-Hamidian S, Norouzi B, Harbach RE (2019) A detailed review of the mosquitoes (Diptera: Culicidae) of Iran and their medical and veterinary importance. Acta Tropica. 194:106-22.
5. Organization WH (2020) World malaria report 2020: 20 years of global progress and challenges.
6.Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitology research. 115(4):1363-73.
7. Benelli G (2015) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitology research. 114(9):3201-12.
8.Vyas N, Dua K, Prakash S (2007) Efficacy of Lagenidium giganteum metabolites on mosquito larvae with reference to nontarget organisms. Parasitology research. 101(2):385-90.
9. Singh R, Dhiman R, Mittal P (2006) Mosquito larvicidal properties of Momordica charantia Linn (family: Cucurbitaceae). Journal of Vector Borne Diseases. 43(2):88.
10. Ahmed A, Abubakr M, Ali Y, Siddig EE, Mohamed NS (2022) Vector control strategy for Anopheles stephensi in Africa. The Lancet Microbe. 3(6):e403.
11. Ghosh A, Chowdhury N, Chandra G (2012) Plant extracts as potential mosquito larvicides. Indian Journal of Medicine Research. 135(5):581-98.
12.Vivekanandhan P, Karthi S, Shivakumar MS, Benelli G (2018) Synergistic effect of entomopathogenic fungus Fusarium oxysporum extract in combination with temephos against three major mosquito vectors. Pathogens and global health. 112(1):37-46.
13.Vivekanandhan P, Kavitha T, Karthi S, Senthil-Nathan S, Shivakumar MS (2018) Toxicity of Beauveria bassiana-28 mycelial extracts on larvae of Culex quinquefasciatus mosquito (Diptera: Culicidae). International journal of environmental research and public health. 15(3):440.
14. Takahashi Y (2004) Exploitation of new microbial resources for bioactive compounds and discovery of new actinomycetes. Actinomycetologica.18 (2):54-61.
15.Blin K, Pascal Andreu V, de los Santos ELC, Del Carratore F, Lee SY, Medema MH (2019) The antiSMASH database version 2: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic acids research. 47(D1):D625-D30.
16. Madigan MT, Martinko JM, Parker J (2006) Brock biology of microorganisms: Pearson Prentice Hall Upper Saddle River, NJ. 100(1):35-46.
17. Bauer A (1966) Antibiotic susceptibility testing by a standardized single disc method. American Journal of Clinical Pathology. 45:149-58.
18.Xu L-H, Tiang Y-Q, Zhang Y-F, Zhao L-X, Jiang C-L (1998) Streptomyces thermogriseus, a new species of the genus Streptomyces from soil, lake and hot-spring. International Journal of Systematic and Evolutionary Microbiology. 48(4):1089-93.
19. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. Journal of natural products. 70(3):461-77.
20.Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical streptomyces genetics: John Innes Foundation Norwich. 32:152-58.
21. Sundarapandian S, Sundaram M, Tholkappian P, Balasubramanian V (2002) Mosquitocidal properties of indigenous fungi and actinomycetes against Culex quinquefasciatus Say. Journal of Biological Control. 16(1):89-92.
22. Hussain A, Mostafa S, Ghazal S, Ibrahim S (2002) Studies on antifungal antibiotic and bioinsecticidal activities of some actinomycete isolates. African Journal of Mycology and Biotechnology. 10(1):63-80.
23.Seratnahaei M, Eshraghi SS, Pakzad P, Zahraei Ramazani A, Yaseri M (2022) Antimicrobial Activities of the Secondary Metabolite Extracted from a Nocardia Strain. Journal of Fasa University of Medical Sciences. 0-.
24.Bafghi MF, Heidarieh P, Soori T, Saber S, Meysamie A, Gheitoli K (2015) Nocardia isolation from clinical samples with the paraffin baiting technique. Germs. 5(1):12-6.
25.Kavitha A, Prabhakar P, Vijayalakshmi M, Venkateswarlu Y (2009) Production of bioactive metabolites by Nocardia levis MK‐VL_113. Letters in applied microbiology. 49(4):484-90.
26. Organization WH (2005) Guidelines for laboratory and field-testing of mosquito larvicides. World Health Organization;
27. Abbott W. A method of computing the effectiveness of an insecticide 1925 (1987) Journal of the American Mosquito Control Association. 3(2):302-3.
28. Finney D (1971) Probit analysis, Cambridge University Press. Cambridge, UK.
29. Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annual review of entomology. 45(1):371-91.
30.Setha T, Chantha N, Benjamin S, Socheat D (2016) Bacterial larvicide, Bacillus thuringiensis israelensis strain AM 65-52 water dispersible granule formulation impacts both dengue vector, Aedes aegypti (L.) population density and disease transmission in Cambodia. PLoS neglected tropical diseases. 10(9):e0004973.
31. Grosscurt AC, Tipker J (1980) Ovicidal and larvicidal structure-activity relationships of benzoylureas on the house fly (Musca domestica). Pesticide Biochemistry and Physiology. 13(3):249-54.
32. Senthil-Nathan S (2020) A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Frontiers in physiology. 10:1591.
33. De Simeis D, Serra S (2021) Actinomycetes: A never-ending source of bioactive compounds-An overview on antibiotics production. Antibiotics. 10(5):483.
34. Huang YS, Higgs S, Vanlandingham DL (2017) Biological Control Strategies for Mosquito Vectors of Arboviruses. Insects. 8(1).
35. Balaraman K (1995) Mosquito control potential of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus. ICMR Bulletin. 25:45-51.
36. Vijayan V, Balaraman K (1991) Metabolites of fungi & actinomycetes active against mosquito larvae. Indian Journal of Medicine Research. 93:115-7.
37.Dhanasekaran D, Sakthi V, Thajuddin N, Panneerselvam A (2010) Preliminary evaluation of Anopheles mosquito larvicidal efficacy of mangrove actinobacteria. International Journal of Applied Biology and Pharmaceutical Technology. 1(2):374-81.
38.Rajesh K, Padmavathi K, Ranjani A, Gopinath P, Dhanasekaran D, Archunan G (2013) Green synthesis, characterization and larvicidal activity of AgNPs against Culex quinquefasciatus and Aedes aegypti larvae. American Journal of Drug Discovery and Development. 3(4):245-53.
39. Tanvir R, Sajid I, Hasnain S (2014) Larvicidal potential of Asteraceae family endophytic actinomycetes against Culex quinquefasciatus mosquito larvae. Natural Product Research. 28(22): 2048-52.
40. Vijayakumar R, Murugesan S, Cholarajan A, Sakthi V (2010) Larvicidal potentiality of marine actinomycetes isolated from Muthupet Mangrove, Tamilnadu, India. International Journal of Microbiology Research. 1(3):179-83.
41. El-Khawagh M, Hamadah KS, El-Sheikh T (2011) The insecticidal activity of Actinomycete metabolites, against the mosquito Culex pipiens. Egyptian Academic Journal of Biological Sciences. 4:103-13.
42. Baraza LD, Joseph CC, Nkunya MH (2007) A new cytotoxic and larvicidal himachalenoid, rosanoids and other constituents of Hugonia busseana. Natural Product Research. 21(11):1027-31.
43. Kamaraj C, Bagavan A, Elango G, Zahir AA, Rajakumar G, Marimuthu S (2011) Larvicidal activity of medicinal plant extracts against Anopheles subpictus & Culex tritaeniorhynchus. The Indian journal of medical research. 134(1):101.
44. Karthik L, Gaurav K, Rao K, Rajakumar G, Rahuman AA (2011) Larvicidal, repellent, and ovicidal activity of marine actinobacteria extracts against Culex tritaeniorhynchus and Culex gelidus. Parasitology research. 108(6):1447-55.
留言 (0)