Alopecia Areata: Current Treatments and New Directions

Simakou T, et al. Alopecia areata: a multifactorial autoimmune condition. J Autoimmun. 2019;98:74–85.

CAS  PubMed  Google Scholar 

Sterkens A, Lambert J, Bervoets A. Alopecia areata: a review on diagnosis, immunological etiopathogenesis and treatment options. Clin Exp Med. 2021;21(2):215–30.

CAS  PubMed  Google Scholar 

Strazzulla LC, et al. Alopecia areata: disease characteristics, clinical evaluation, and new perspectives on pathogenesis. J Am Acad Dermatol. 2018;78(1):1–12.

PubMed  Google Scholar 

Lintzeri DA, et al. Alopecia areata—current understanding and management. JDDG: Journal der Deutschen Dermatologischen Gesellschaft. 2022;20(1):59–90.

Güleç AT, et al. The role of psychological factors in alopecia areata and the impact of the disease on the quality of life. Int J Dermatol. 2004;43(5):352–6.

PubMed  Google Scholar 

Gupta MA, Gupta AK, Watteel GN. Stress and alopecia areata: a psychodermatologic study. Acta Derm Venereol. 1997;77(4):296–8.

CAS  PubMed  Google Scholar 

Griesemer RD. Emotionally triggered disease in a dermatologic practice. Psychiatr Ann. 1978;8(8):49–56.

Google Scholar 

Rodriguez TA, Duvic M. Onset of alopecia areata after Epstein–Barr virus infectious mononucleosis. J Am Acad Dermatol. 2008;59(1):137–9.

PubMed  Google Scholar 

Petukhova L, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature. 2010;466(7302):113–7.

CAS  PubMed  PubMed Central  Google Scholar 

Gilhar A, Paus R, Kalish RS. Lymphocytes, neuropeptides, and genes involved in alopecia areata. J Clin Investig. 2007;117(8):2019–27.

CAS  PubMed  PubMed Central  Google Scholar 

Olsen EA, et al. Alopecia areata investigational assessment guidelines—part II. J Am Acad Dermatol. 2004;51(3):440–7.

PubMed  Google Scholar 

King B, et al. Two phase 3 trials of baricitinib for alopecia areata. N Engl J Med. 2022;386(18):1687–99.

CAS  PubMed  Google Scholar 

Ali E, et al. Olumniant (Baricitinib) oral tablets: an insight into FDA-approved systemic treatment for Alopecia Areata. Ann Med Surg (Lond). 2022;80: 104157.

PubMed  Google Scholar 

FDA Approves Pfizer’s LITFULO™ (Ritlecitinib) for Adults and Adolescents With Severe Alopecia Areata. 2023 [cited 22 July 2023]; https://www.businesswire.com/news/home/20230623087591/en/FDA-Approves-Pfizer’s-LITFULO™-Ritlecitinib-for-Adults-and-Adolescents-With-Severe-Alopecia-Areata. Accessed 19 July 2023.

Pfizer. FDA and EMA accept regulatory submission for Pfizer’s ritlecitinib for individuals 12 years and older with alopecia areata. 2022 [cited 28 Oct 2022]. https://www.pfizer.com/news/press-release/press-release-detail/fda-and-ema-accept-regulatory-submission-pfizers. Accessed 27 Oct 2022.

Paus R, Nickoloff BJ, Ito T. A ‘hairy’ privilege. Trends Immunol. 2005;26(1):32–40.

CAS  PubMed  Google Scholar 

Meyer KC, et al. Evidence that the bulge region is a site of relative immune privilege in human hair follicles. Br J Dermatol. 2008;159(5):1077–85.

CAS  PubMed  Google Scholar 

Harries MJ, et al. Management of alopecia areata. BMJ. 2010;341: c3671.

CAS  PubMed  PubMed Central  Google Scholar 

Ito T, et al. Collapse and restoration of MHC class-I-dependent immune privilege: exploiting the human hair follicle as a model. Am J Pathol. 2004;164(2):623–34.

CAS  PubMed  PubMed Central  Google Scholar 

Bertolini M, et al. Vasoactive intestinal peptide, whose receptor-mediated signalling may be defective in alopecia areata, provides protection from hair follicle immune privilege collapse. Br J Dermatol. 2016;175(3):531–41.

CAS  PubMed  Google Scholar 

Bertolini M, et al. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol. 2020;29(8):703–25.

CAS  PubMed  Google Scholar 

Ito T, et al. Maintenance of hair follicle immune privilege is linked to prevention of NK cell attack. J Investig Dermatol. 2008;128(5):1196–206.

CAS  PubMed  Google Scholar 

Gilhar A, et al. Autoimmune disease induction in a healthy human organ: a humanized mouse model of alopecia areata. J Investig Dermatol. 2013;133(3):844–7.

CAS  PubMed  Google Scholar 

Kasumagic-Halilovic E, Prohic A, Karamehic J. Serum concentrations of interferon-gamma (IFN-g) in patients with alopecia areata: correlation with clinical type and duration of the disease. Med Arh. 2010;64(4):212–4.

PubMed  Google Scholar 

Zainodini N, et al. Differential expression of CXCL1, CXCL9, CXCL10 and CXCL12 chemokines in alopecia areata. Iran J Immunol. 2013;10(1):40–6.

CAS  PubMed  Google Scholar 

Bilgic O, et al. Serum cytokine and chemokine profiles in patients with alopecia areata. J Dermatolog Treat. 2016;27(3):260–3.

CAS  PubMed  Google Scholar 

Guo H, et al. The role of lymphocytes in the development and treatment of alopecia areata. Expert Rev Clin Immunol. 2015;11(12):1335–51.

CAS  PubMed  PubMed Central  Google Scholar 

Bertolini M, et al. Abnormal interactions between perifollicular mast cells and CD8+ T-cells may contribute to the pathogenesis of alopecia areata. PLoS ONE. 2014;9(5): e94260.

PubMed  PubMed Central  Google Scholar 

Peters EM, et al. Probing the effects of stress mediators on the human hair follicle: substance P holds central position. Am J Pathol. 2007;171(6):1872–86.

CAS  PubMed  PubMed Central  Google Scholar 

Paus R, Bulfone-Paus S, Bertolini M. Hair follicle immune privilege revisited: the key to alopecia areata management. J Investig Dermatol Symp Proc. 2018;19(1):S12-s17.

PubMed  Google Scholar 

Perret C, Wiesner-Menzel L, Happle R. Immunohistochemical analysis of T-cell subsets in the peribulbar and intrabulbar infiltrates of alopecia areata. Acta Derm Venereol. 1984;64(1):26–30.

CAS  PubMed  Google Scholar 

Ranki A, et al. Immunohistochemical and electron microscopic characterization of the cellular infiltrate in alopecia (areata, totalis, and universalis). J Investig Dermatol. 1984;83(1):7–11.

CAS  PubMed  Google Scholar 

McElwee KJ, et al. Alopecia areata in C3H/HeJ mice involves leukocyte-mediated root sheath disruption in advance of overt hair loss. Vet Pathol. 2003;40(6):643–50.

CAS  PubMed  Google Scholar 

Oh JW, et al. A guide to studying human hair follicle cycling in vivo. J Investig Dermatol. 2016;136(1):34–44.

CAS  PubMed  Google Scholar 

Ryan GE, Harris JE, Richmond JM. Resident memory T cells in autoimmune skin diseases. Front Immunol. 2021;12: 652191.

CAS  PubMed  PubMed Central  Google Scholar 

Xing L, et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med. 2014;20(9):1043–9.

CAS  PubMed  PubMed Central  Google Scholar 

Shea JJ, et al. Janus kinase inhibitors in autoimmune diseases. Ann Rheum Dis. 2013;72 Suppl (2):111–5.

Gilhar A, et al. Frontiers in alopecia areata pathobiology research. J Allergy Clin Immunol. 2019;144(6):1478–89.

CAS  PubMed  Google Scholar 

Zhou C, et al. Alopecia areata: an update on etiopathogenesis, diagnosis, and management. Clin Rev Allergy Immunol. 2021;61(3):403–23.

PubMed  Google Scholar 

Divito SJ, Kupper TS. Inhibiting janus kinases to treat alopecia areata. Nat Med. 2014;20(9):989–90.

CAS  PubMed  Google Scholar 

Kuo PT, et al. The role of CXCR3 and its chemokine ligands in skin disease and cancer. Front Med. 2018;5:271.

Google Scholar 

Howell MD, Kuo FI, Smith PA. Targeting the Janus kinase family in autoimmune skin diseases. Front Immunol. 2019;10:2342.

Jagielska D, et al. Follow-up study of the first genome-wide association scan in alopecia areata: IL13 and KIAA0350 as susceptibility loci supported with genome-wide significance. J Investig Dermatol. 2012;132(9):2192–7.

CAS  PubMed  Google Scholar 

Suárez-Fariñas M, et al. Alopecia areata profiling shows TH1, TH2, and IL-23 cytokine activation without parallel TH17/TH22 skewing. J Allergy Clin Immunol. 2015;136(5):1277–87.

PubMed  Google Scholar 

Glickman JW, et al. An integrated scalp and blood biomarker approach suggests the systemic nature of alopecia areata. Allergy. 2021;76(10):3053–65.

CAS  PubMed  Google Scholar 

Attia EAS, El Shennawy D, Sefin A. Serum interleukin-4 and Total immunoglobulin E in nonatopic alopecia areata patients and HLA-DRB1 typing. Dermatol Res Pract. 2010;2010: 503587.

PubMed  PubMed Central  Google Scholar 

Guttman-Yassky E, et al. Ritlecitinib and brepocitinib demonstrate significant improvement in scalp alopecia areata biomarkers. J Allergy Clin Immunol. 2022;149(4):1318–28.

CAS  PubMed  Google Scholar 

Guttman-Yassky E, et al. Phase 2a randomized clinical trial of dupilumab (anti-IL-4Rα) for alopecia areata patients. Allergy. 2022;77(3):897–906.

CAS  PubMed  Google Scholar 

Bakry OA, et al. Total serum immunoglobulin E in patients with alopecia areata. Indian Dermatol Online J. 2014;5(2):122–7.

PubMed  PubMed Central  Google Scholar 

Renert-Yuval Y, et al. Scalp biomarkers during dupilumab treatment support Th2 pathway pathogenicity in alopecia areata. Allergy. 2023;78(4):1047–1059.

Glickman JW, et al. Cross-sectional study of blood biomarkers of patients with moderate to severe alopecia areata reveals systemic immune and cardiovascular biomarker dysregulation. J Am Acad Dermatol. 2021;84(2):370–80.

CAS  PubMed 

留言 (0)

沒有登入
gif