Conserved and Divergent Features of pH Sensing in Major Fungal Pathogens

Serra-Cardona A, Canadell D, Ariño J. Coordinate responses to alkaline pH stress in budding yeast. Microbial Cell (Graz, Austria). 2015;2(6):182–96.

Article  CAS  PubMed  Google Scholar 

Brown HE, Ost KS, Esher SK, Pianalto KM, Saelens JW, Guan Z, et al. Identifying a novel connection between the fungal plasma membrane and pH-sensing. Mol Microbiol. 2018;109(4):474–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peñalva MA, Lucena-Agell D, Arst HN. Liaison alcaline: pals entice non-endosomal ESCRTs to the plasma membrane for pH signaling. Curr Opin Microbiol. 2014;22:49–59.

Article  PubMed  Google Scholar 

(2017) Stop neglecting fungi. Nature Microbiol 2(8):17120

• Organization WH. WHO fungal priority pathogens list to guide research, development and public health action 2022 [updated 25/10/2022. Available from: https://www.who.int/publications/i/item/9789240060241. This study highlights the importance of the pathogens that we have focused on, listing all those discussed as of critical concern.

Bertuzzi M, Schrettl M, Alcazar-Fuoli L, Cairns TC, Muñoz A, Walker LA, et al. The pH-responsive PacC transcription factor of Aspergillus fumigatus governs epithelial entry and tissue invasion during pulmonary aspergillosis. PLoS Pathog. 2014;10(10):e1004413.

Article  PubMed  PubMed Central  Google Scholar 

Bignell E, Negrete-Urtasun S, Calcagno AM, Haynes K, Arst HN Jr, Rogers T. The Aspergillus pH-responsive transcription factor PacC regulates virulence. Mol Microbiol. 2005;55(4):1072–84.

Article  CAS  PubMed  Google Scholar 

Peñalva MA, Tilburn J, Bignell E, Arst HN. Ambient pH gene regulation in fungi: making connections. Trends Microbiol. 2008;16(6):291–300.

Article  PubMed  Google Scholar 

Lamb TM, Xu W, Diamond A, Mitchell AP. Alkaline response genes of Saccharomyces cerevisiae and their relationship to the Rim101 pathway. J Biol Chem. 2001;276(3):1850–6.

Article  CAS  PubMed  Google Scholar 

Negrete-Urtasun S, Reiter W, Diez E, Denison SH, Tilburn J, Espeso EA, et al. Ambient pH signal transduction in Aspergillus: completion of gene characterization. Mol Microbiol. 1999;33(5):994–1003.

Article  CAS  PubMed  Google Scholar 

Davis D, Edwards JE Jr, Mitchell AP, Ibrahim AS. Candida albicans Rim101 pH response pathway is required for host-pathogen interactions. Infect Immun. 2000;68(10):5953–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Ost KS, O’Meara TR, Huda N, Esher SK, Alspaugh JA. The Cryptococcus neoformans alkaline response pathway: identification of a novel rim pathway activator. PLoS Genet. 2015;11(4):e1005159. This study identified a significantly divergent mechanism of pathway activation compared to other assessed pathogens.

Article  PubMed  PubMed Central  Google Scholar 

Obara K, Yamamoto H, Kihara A. Membrane protein Rim21 plays a central role in sensing ambient pH in Saccharomyces cerevisiae. J Biol Chem. 2012;287(46):38473–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cornet M, Richard ML, Gaillardin C. The homologue of the Saccharomyces cerevisiae RIM9 gene is required for ambient pH signalling in Candida albicans. Res Microbiol. 2009;160(3):219–23.

Article  CAS  PubMed  Google Scholar 

Barwell KJ, Boysen JH, Xu W, Mitchell AP. Relationship of Dfg16 to the Rim101p pH response pathway in Saccharomyces cerevisiae and Candida albicans. Eukaryot Cell. 2005;4(5):890–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Velazhahan V, McCann BL, Bignell E, Tate CG. Developing novel antifungals: lessons from G protein-coupled receptors. Trends Pharmacol Sci. 2023;44(3):162–74. This review highlights that the pH signalling pathway is being studied to identify urgently needed antifungals with novel mechanisms of action.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pianalto KM, Ost KS, Brown HE, Alspaugh JA. Characterization of additional components of the environmental pH-sensing complex in the pathogenic fungus Cryptococcus neoformans. J Biol Chem. 2018;293(26):9995–10008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herranz S, Rodríguez JM, Bussink HJ, Sánchez-Ferrero JC, Arst HN Jr, Peñalva MA, et al. Arrestin-related proteins mediate pH signaling in fungi. Proc Natl Acad Sci U S A. 2005;102(34):12141–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertuzzi M, Bignell EM. Sensory perception in fungal pathogens: applications of the split-ubiquitin Membrane Yeast Two-Hybrid (MYTH) technique. Fungal Biol Rev. 2011;25(4):165–71.

Article  Google Scholar 

Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A. 2001;98(8):4569–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hervás-Aguilar A, Galindo A, Peñalva MA. Receptor-independent ambient pH signaling by ubiquitin attachment to fungal arrestin-like PalF*. J Biol Chem. 2010;285(23):18095–102.

Article  PubMed  PubMed Central  Google Scholar 

Lin CH, MacGurn JA, Chu T, Stefan CJ, Emr SD. Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell. 2008;135(4):714–25.

Article  CAS  PubMed  Google Scholar 

Nikko E, Sullivan JA, Pelham HRB. Arrestin-like proteins mediate ubiquitination and endocytosis of the yeast metal transporter Smf1. EMBO Rep. 2008;9(12):1216–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Becuwe M, Vieira N, Lara D, Gomes-Rezende J, Soares-Cunha C, Casal M, et al. A molecular switch on an arrestin-like protein relays glucose signaling to transporter endocytosis. J Cell Biol. 2012;196(2):247–59.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karachaliou M, Amillis S, Evangelinos M, Kokotos AC, Yalelis V, Diallinas G. The arrestin-like protein ArtA is essential for ubiquitination and endocytosis of the UapA transporter in response to both broad-range and specific signals. Mol Microbiol. 2013;88(2):301–17.

Article  CAS  PubMed  Google Scholar 

Becuwe M, Léon S (2014) Integrated control of transporter endocytosis and recycling by the arrestin-related protein Rod1 and the ubiquitin ligase Rsp5 eLife 3:e03307. https://doi.org/10.7554/eLife.03307

Maeda T. The signaling mechanism of ambient pH sensing and adaptation in yeast and fungi. FEBS J. 2012;279(8):1407–13.

Article  CAS  PubMed  Google Scholar 

Herrador A, Herranz S, Lara D, Vincent O. Recruitment of the ESCRT machinery to a putative seven-transmembrane-domain receptor is mediated by an arrestin-related protein. Mol Cell Biol. 2010;30(4):897–907.

Article  CAS  PubMed  Google Scholar 

Obara K, Kihara A. Signaling events of the Rim101 pathway occur at the plasma membrane in a ubiquitination-dependent manner. Mol Cell Biol. 2014;34(18):3525–34.

Article  PubMed  PubMed Central  Google Scholar 

• Gomez-Raja J, Davis DA. The β-arrestin-like protein Rim8 is hyperphosphorylated and complexes with Rim21 and Rim101 to promote adaptation to neutral-alkaline pH. Eukaryot Cell. 2012;11(5):683–93. This study highlights the critical nature of PTM for the transmission of extracellular signals.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herrador A, Livas D, Soletto L, Becuwe M, Léon S, Vincent O. Casein kinase 1 controls the activation threshold of an α-arrestin by multisite phosphorylation of the interdomain hinge. Mol Biol Cell. 2015;26(11):2128–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Denison SH, Negrete-Urtasun S, Mingot JM, Tilburn J, Mayer WA, Goel A, et al. Putative membrane components of signal transduction pathways for ambient pH regulation in Aspergillus and meiosis in saccharomyces are homologous. Mol Microbiol. 1998;30(2):259–64.

Article  CAS  PubMed  Google Scholar 

Yan L, Côte P, Li XX, Jiang YY, Whiteway M. PalI domain proteins of Saccharomyces cerevisiae and Candida albicans. Microbiol Res. 2012;167(7):422–32.

Article  CAS  PubMed  Google Scholar 

Calcagno-Pizarelli AM, Negrete-Urtasun S, Denison SH, Rudnicka JD, Bussink HJ, Múnera-Huertas T, et al. Establishment of the ambient pH signaling complex in Aspergillus nidulans: PalI assists plasma membrane localization of PalH. Eukaryot Cell. 2007;6(12):2365–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rothfels K, Tanny JC, Molnar E, Friesen H, Commisso C, Segall J. Components of the ESCRT pathway, Dfg16, and Ygr122w are required for Rim101 to act as a corepressor with Nrg1 at the negative regulatory element of the DIT1 gene of Saccharomyces cerevisiae. Mol Cell Biol. 2005;25(15):6772–88.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lucena-Agell D, Galindo A, Arst HN Jr, Peñalva MA. Aspergillus nidulans Ambient pH Signaling Does Not Require Endocytosis. Eukaryot Cell. 2015;14(6):545–53.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif