Nguyen HS, Doan NB, Gelsomino M et al (2018) Intracranial hemangioblastoma—a SEER-based analysis 2004–2013. Oncotarget 9:28009–28015
Article PubMed PubMed Central Google Scholar
Huntoon K, Wu T, Elder JB et al (2016) Biological and clinical impact of hemangioblastoma-associated peritumoral cysts in von Hippel-Lindau disease. J Neurosurg 124:971–976
Article CAS PubMed Google Scholar
Wanebo JE, Lonser RR, Glenn GM et al (2003) The natural history of hemangioblastomas of the central nervous system in patients with von Hippel-Lindau disease. J Neurosurg 98:82–94
Lonser RR, Vortmeyer AO, Butman JA et al (2005) Edema is a precursor to central nervous system peritumoral cyst formation. Ann Neurol 58:392–399
Gläsker S, Vortmeyer AO, Lonser RR et al (2006) Proteomic analysis of hemangioblastoma cyst fluid. Cancer Biol Ther 5:549–553
Armulik A, Genové G, Mäe M et al (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561
Article CAS PubMed Google Scholar
Mäe MA, He L, Nordling S et al (2021) Single-cell analysis of blood-brain barrier response to pericyte loss. Circ Res 128:e46–e62
Girolamo F, Errede M, Bizzoca A et al (2022) Central nervous system pericytes contribute to health and disease. Cells 11:1707
Article CAS PubMed PubMed Central Google Scholar
Smyth LCD, Rustenhoven J, Scotter EL et al (2018) Markers for human brain pericytes and smooth muscle cells. J Chem Neuroanat 92:48–60
Article CAS PubMed Google Scholar
Alarcon-Martinez L, Yemisci M, Dalkara T (2021) Pericyte morphology and function. Histol Histopathol 36:633–643
Damisah EC, Hill RA, Tong L et al (2017) A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging. Nat Neurosci 20:1023–1032
Article CAS PubMed PubMed Central Google Scholar
Vanlandewijck M, He L, Mäe MA et al (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554:475–480
Article CAS PubMed Google Scholar
Grant RI, Hartmann DA, Underly RG et al (2019) Organizational hierarchy and structural diversity of microvascular pericytes in adult mouse cortex. J Cereb Blood Flow Metab 39:411–425
Chasseigneaux S, Moraca Y, Cochois-Guégan V et al (2018) Isolation and differential transcriptome of vascular smooth muscle cells and mid-capillary pericytes from the rat brain. Sci Rep 8:12272
Article PubMed PubMed Central Google Scholar
Bohannon DG, Long D, Kim WK (2021) Understanding the heterogeneity of human pericyte subsets in blood-brain barrier homeostasis and neurological diseases. Cells 10:890
Article CAS PubMed PubMed Central Google Scholar
Almaça J, Weitz J, Rodriguez-Diaz R et al (2018) The pericyte of the pancreatic islet regulates capillary diameter and local blood flow. Cell Metab 27:630-644.e4
Article PubMed PubMed Central Google Scholar
Dubrac A, Künzel SE, Künzel SH et al (2018) NCK-dependent pericyte migration promotes pathological neovascularization in ischemic retinopathy. Nat Commun 9:3463
Article PubMed PubMed Central Google Scholar
Morikawa S, Baluk P, Kaidoh T et al (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000
Article PubMed PubMed Central Google Scholar
Leinster DA, Kulbe H, Everitt G et al (2012) The peritoneal tumour microenvironment of high-grade serous ovarian cancer. J Pathol 227:136–145
Article CAS PubMed PubMed Central Google Scholar
Natarajan V, Ha S, Delgado A et al (2022) Acquired αSMA Expression in pericytes coincides with aberrant vascular structure and function in pancreatic ductal adenocarcinoma. Cancers (Basel) 14:2448
Article CAS PubMed Google Scholar
Hasselblatt M, Jeibmann A, Gerss J et al (2005) Cellular and reticular variants of haemangioblastoma revisited: a clinicopathologic study of 88 cases. Neuropathol Appl Neurobiol 31:618–622
Article CAS PubMed Google Scholar
Hartmann DA, Underly RG, Grant RI et al (2015) Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics 2:041402
Article PubMed PubMed Central Google Scholar
Tadeo I, Bueno G, Berbegall AP et al (2016) Vascular patterns provide therapeutic targets in aggressive neuroblastic tumors. Oncotarget 7:19935–19947
Article PubMed PubMed Central Google Scholar
Baccala A, Sercia L, Li J et al (2007) Expression of prostate-specific membrane antigen in tumor-associated neovasculature of renal neoplasms. Urology 70:385–390
Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22:1276–1312
Article CAS PubMed PubMed Central Google Scholar
Bohannon DG, Okhravi HR, Kim J et al (2020) A subtype of cerebrovascular pericytes is associated with blood-brain barrier disruption that develops during normal aging and simian immunodeficiency virus infection. Neurobiol Aging 96:128–136
Article CAS PubMed PubMed Central Google Scholar
Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257
Article CAS PubMed Google Scholar
von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312:623–629
Zambach SA, Cai C, Helms HCC et al (2021) Precapillary sphincters and pericytes at first-order capillaries as key regulators for brain capillary perfusion. Proc Natl Acad Sci U S A 118:e2023749118
Article CAS PubMed PubMed Central Google Scholar
Goel S, Wong AH, Jain RK (2012) Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med 2:a006486
Article PubMed PubMed Central Google Scholar
Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62
Article CAS PubMed Google Scholar
Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603
Article CAS PubMed PubMed Central Google Scholar
Li B, Xu D, Zhou J et al (2022) Monitoring bevacizumab-induced tumor vascular normalization by intravoxel incoherent motion diffusion-weighted MRI. J Magn Reson Imaging 56:427–439
Article CAS PubMed Google Scholar
Hauge A, Gaustad JV, Huang R et al (2019) DCE-MRI and quantitative histology reveal enhanced vessel maturation but impaired perfusion and increased hypoxia in bevacizumab-treated cervical carcinoma. Int J Radiat Oncol Biol Phys 104:666–676
Vangestel C, Van de Wiele C, Van Damme N et al (2011) (99)mTc-(CO)(3) His-annexin A5 micro-SPECT demonstrates increased cell death by irinotecan during the vascular normalization window caused by bevacizumab. J Nucl Med 52:1786–1794
Article CAS PubMed Google Scholar
Okamoto S, Nitta M, Maruyama T et al (2016) Bevacizumab changes vascular structure and modulates the expression of angiogenic factors in recurrent malignant gliomas. Brain Tumor Pathol 33:129–136
留言 (0)