Neuroprotective Effects of Piceatannol on Olfactory Bulb Injury after Subarachnoid Hemorrhage

Macdonald RL, Schweizer TA (2017) Spontaneous subarachnoid haemorrhage. Lancet 389:655–666. https://doi.org/10.1016/S0140-6736(16)30668-7

Article  PubMed  Google Scholar 

Djelilovic-Vranic J, Basic-Kes V, Tiric-Campara M et al (2017) Follow-up of vasospasm by transcranial doppler sonography (TCD) in subarachnoid hemorrhage (SAH). Acta Inform Med 25:14–18. https://doi.org/10.5455/AIM.2017.25.14-18

Article  PubMed  PubMed Central  Google Scholar 

van Gijn J, Kerr RS, Rinkel GJ (2007) Subarachnoid haemorrhage. Lancet 369:306–318. https://doi.org/10.1016/S0140-6736(07)60153-6

Article  PubMed  Google Scholar 

Etminan N, Chang HS, Hackenberg K et al (2019) Worldwide ıncidence of aneurysmal subarachnoid hemorrhage according to region, time period, blood pressure, and smoking prevalence in the population: a systematic review and meta-analysis. JAMA Neurol 76:588–597. https://doi.org/10.1001/JAMANEUROL.2019.0006

Article  PubMed  PubMed Central  Google Scholar 

Kertzscher U, Schneider T, Goubergrits L et al (2009) Head motion therapy after subarachnoid hemorrhage: preliminary results of an in vitro study in a basal cistern model. IFMBE Proc 25:2103–2106. https://doi.org/10.1007/978-3-642-03882-2_558

Article  Google Scholar 

Martin GE, Junqué C, Juncadella M et al (2009) Olfactory dysfunction after subarachnoid hemorrhage caused by ruptured aneurysms of the anterior communicating artery. Clinical article J Neurosurg 111:958–962. https://doi.org/10.3171/2008.11.JNS08827

Article  PubMed  Google Scholar 

Aydin IH, Kadioǧlu HH, Tüzün Y et al (1996) Postoperative anosmia after anterior communicating artery aneurysms surgery by the pterional approach. Minim Invasive Neurosurg 39:71–73. https://doi.org/10.1055/S-2008-1052220

Article  CAS  PubMed  Google Scholar 

Fujiwara H, Yasui N, Nathal-Vera E, Suzuki A (1996) Anosmia after anterior communicating artery aneurysm surgery: comparison between the anterior interhemispheric and basal interhemispheric approaches. Neurosurgery 38:325–328. https://doi.org/10.1097/00006123-199602000-00017

Article  CAS  PubMed  Google Scholar 

de Vries J, Menovsky T, Ingels K (2007) Evaluation of olfactory nerve function after aneurysmal subarachnoid hemorrhage and clip occlusion. J Neurosurg 107:1126–1129. https://doi.org/10.3171/JNS-07/12/1126

Article  PubMed  Google Scholar 

Bor ASE, Niemansburg SL, Wermer MJH, Rinkel GJE (2009) Anosmia after coiling of ruptured aneurysms: prevalence, prognosis, and risk factors. Stroke 40:2226–2228. https://doi.org/10.1161/STROKEAHA.108.539445

Article  PubMed  Google Scholar 

Moman MR, Verweij BH, Buwalda J, Rinkel GJE (2009) Anosmia after endovascular and open surgical treatment of intracranial aneurysms. J Neurosurg 110:482–486. https://doi.org/10.3171/2008.8.JNS08761

Article  PubMed  Google Scholar 

Cahill WJ, Calvert JH, Zhang JH (2006) Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 26:1341–1353. https://doi.org/10.1038/SJ.JCBFM.9600283

Article  CAS  PubMed  Google Scholar 

Sabri M, Kawashima A, Ai J, Macdonald RL (2008) Neuronal and astrocytic apoptosis after subarachnoid hemorrhage: a possible cause for poor prognosis. Brain Res 1238:163–171. https://doi.org/10.1016/J.BRAINRES.2008.08.031

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang XS, Zhang X, Wu Q et al (2014) Astaxanthin offers neuroprotection and reduces neuroinflammation in experimental subarachnoid hemorrhage. J Surg Res 192:206–213. https://doi.org/10.1016/J.JSS.2014.05.029

Article  CAS  PubMed  Google Scholar 

He Y, Xu L, Li B et al (2015) Macrophage-ınducible C-type lectin/spleen tyrosine kinase signaling pathway contributes to neuroinflammation after subarachnoid hemorrhage in rats. Stroke 46:2277–2286. https://doi.org/10.1161/STROKEAHA.115.010088

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kobayashi M, Tamari K, Miyamura T, Takeuchi K (2013) Blockade of interleukin-6 receptor suppresses inflammatory reaction and facilitates functional recovery following olfactory system injury. Neurosci Res 76:125–132. https://doi.org/10.1016/J.NEURES.2013.03.015

Article  CAS  PubMed  Google Scholar 

Al Salihi MO, Kobayashi M, Tamari K et al (2017) Tumor necrosis factor-α antagonist suppresses local inflammatory reaction and facilitates olfactory nerve recovery following injury. Auris Nasus Larynx 44:70–78. https://doi.org/10.1016/J.ANL.2016.05.009

Article  PubMed  Google Scholar 

Zhao Y, Wang B, Gao Y et al (2007) Olfactory ensheathing cell apoptosis induced by hypoxia and serum deprivation. Neurosci Lett 421:197–202. https://doi.org/10.1016/J.NEULET.2007.04.028

Article  CAS  PubMed  Google Scholar 

Kawakami S, Kinoshita Y, Maruki-Uchida H et al (2014) Piceatannol and its metabolite, isorhapontigenin, induce SIRT1 expression in THP-1 human monocytic cell line. Nutrients 6:4794–4804. https://doi.org/10.3390/NU6114794

Article  PubMed  PubMed Central  Google Scholar 

Okawara M, Katsuki H, Kurimoto E et al (2007) Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochem Pharmacol 73:550–560. https://doi.org/10.1016/J.BCP.2006.11.003

Article  CAS  PubMed  Google Scholar 

Lucas J, Hsieh TC, Halicka HD et al (2018) Upregulation of PD-L1 expression by resveratrol and piceatannol in breast and colorectal cancer cells occurs via HDAC3/p300-mediated NF-κB signaling. Int J Oncol 53:1469–1480. https://doi.org/10.3892/IJO.2018.4512

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang D, Zhang Y, Zhang C et al (2019) Piceatannol pretreatment alleviates acute cardiac injury via regulating PI3K-Akt-eNOS signaling in H9c2 cells. Biomed Pharmacother 109:886–891. https://doi.org/10.1016/J.BIOPHA.2018.10.120

Article  CAS  PubMed  Google Scholar 

Wen J, Lin H, Zhao M et al (2018) Piceatannol attenuates D-GalN/LPS-induced hepatoxicity in mice: ınvolvement of ER stress, inflammation and oxidative stress. Int Immunopharmacol 64:131–139. https://doi.org/10.1016/J.INTIMP.2018.08.037

Article  CAS  PubMed  Google Scholar 

Kang JH, Choung SY (2016) Protective effects of resveratrol and its analogs on age-related macular degeneration in vitro. Arch Pharm Res 39:1703–1715. https://doi.org/10.1007/S12272-016-0839-0

Article  CAS  PubMed  Google Scholar 

Maruki-Uchida H, Morita M, Yonei Y, Sai M (2018) Effect of passion fruit seed extract rich in piceatannol on the skin of women: a randomised, placebo-controlled, double-blind trial. J Nutr Sci Vitaminol (Tokyo) 64:75–80. https://doi.org/10.3177/JNSV.64.75

Article  CAS  PubMed  Google Scholar 

Zhang Z, Fang J, Zhou J et al (2022) Pterostilbene attenuates subarachnoid hemorrhage-ınduced brain ınjury through the SIRT1-dependent Nrf2 signaling pathway. Oxid Med Cell Longev 2022:1–11. https://doi.org/10.1155/2022/3550204

Article  CAS  Google Scholar 

Zeng Y, Fang Z, Lai J et al (2022) Activation of sirtuin-1 by pinocembrin treatment contributes to reduced early brain ınjury after subarachnoid hemorrhage. Oxid Med Cell Longev 2022:2242833. https://doi.org/10.1155/2022/2242833

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan B, Zhao XD, Shen J da et al (2022) Activation of SIRT1 alleviates ferroptosis in the early brain ınjury after subarachnoid hemorrhage Oxid Med Cell Longev.https://doi.org/10.1155/2022/9069825

Kitada M, Ogura Y, Maruki-Uchida H et al (2017) The effect of piceatannol from passion fruit (Passiflora edulis) seeds on metabolic health in humans Nutrients 9. https://doi.org/10.3390/NU9101142

Quadros Gomes BA, Bastos Silva JP, Rodrigues Romeiro CF et al (2018) Neuroprotective mechanisms of resveratrol in Alzheimer’s disease role of SIRT1 Oxid Med Cell Longev. https://doi.org/10.1155/2018/8152373

Prunell GF, Mathiesen T, Svendgaard NA (2002) A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. NeuroReport 13:2553–2556. https://doi.org/10.1097/00001756-200212200-00034

Article  PubMed  Google Scholar 

Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation Stroke 26:627–634. https://doi.org/10.1161/01.STR.26.4.627

Article  CAS  PubMed  Google Scholar 

Ding K, Xu J, Wang H et al (2015) Melatonin protects the brain from apoptosis by enhancement of autophagy after traumatic brain injury in mice. Neurochem Int 91:46–54. https://doi.org/10.1016/J.NEUINT.2015.10.008

Article  CAS  PubMed  Google Scholar 

Chan V, O’kelly C, (2019) Response by Chan and O’Kelly to letter regarding article, “Declining Admission and Mortality Rates for Subarachnoid Hemorrhage in Canada Between 2004 and 2015.” Stroke 50:E133. https://doi.org/10.1161/STROKEAHA.119.025114

Article  PubMed  Google Scholar 

Maher M, Schweizer TA, Macdonald RL (2020) Treatment of spontaneous subarachnoid hemorrhage: guidelines and gaps. Stroke 51:1326–1332. https://doi.org/10.1161/STROKEAHA.119.025997

Article  PubMed  Google Scholar 

Connolly ES, Rabinstein AA, Carhuapoma JR et al (2012) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 43:1711–1737. https://doi.org/10.1161/STR.0B013E3182587839

Article  PubMed  Google Scholar 

Cao Y, Li Y, He C et al (2021) Selective ferroptosis ınhibitor liproxstatin-1 attenuates neurological deficits and neuroinflammation after subarachnoid hemorrhage. Neurosci Bull 37:535–549. https://doi.org/10.1007/S12264-020-00620-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nishida S, Kawauchi S, Toyooka T et al (2021) Local application of magnesium sulfate solution suppressed cortical spreading ıschemia and reduced brain damage in a rat subarachnoid hemorrhage-mimicking model. World Neurosurg 155:e704–e715. https://doi.org/10.1016/J.WNEU.2021.08.130

Article  PubMed 

留言 (0)

沒有登入
gif