Gimelli A, Liga R, Agostini D, Bengel FM, Ernst S, Hyafil F, et al. The role of myocardial innervation imaging in different clinical scenarios: an expert document of the European Association of Cardiovascular Imaging and Cardiovascular Committee of the European Association of Nuclear Medicine. Eur Heart J Cardiovasc Imaging. 2021;22(5):480–90. https://doi.org/10.1093/ehjci/jeab007.
Gargiulo P, Acampa W, Asile G, Abbate V, Nardi E, Marzano F, et al. 123I-MIBG imaging in heart failure: impact of comorbidities on cardiac sympathetic innervation. Eur J Nucl Med Mol Imaging. 2023;50(3):813–24. https://doi.org/10.1007/s00259-022-05941-3.
Pontico M, Brunotti G, Conte M, Corica F, Cosma L, De Angelis C, et al. The prognostic value of 123I-mIBG SPECT cardiac imaging in heart failure patients: a systematic review. J Nucl Cardiol. 2022;29(4):1799–809. https://doi.org/10.1007/s12350-020-02501-w.
Verschure DO, Nakajima K, Verberne HJ. Cardiac 123I-mIBG Imaging in Heart Failure. Pharmaceuticals (Basel). 2022;15(6):656. https://doi.org/10.3390/ph15060656.
Article CAS PubMed Google Scholar
Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010; 55(20):2212–21 https://doi.org/10.1016/j.jacc.2010.01.014.
Hachamovitch R, Nutter B, Menon V, Cerqueira MD. Predicting risk versus predicting potential survival benefit using 123I-mIBG imaging in patients with systolic dysfunction eligible for implantable cardiac defibrillator implantation: analysis of data from the prospective ADMIRE-HF study. Circ Cardiovasc Imaging. 2015;12:e003110. https://doi.org/10.1161/CIRCIMAGING.114.003110.
Gimelli A, Liga R, Menichetti F, Soldati E, Bongiorni MG, Marzullo P. Interactions between myocardial sympathetic denervation and left ventricular mechanical dyssynchrony: a CZT analysis. J Nucl Cardiol. 2019;26(2):509–18. https://doi.org/10.1007/s12350-017-1036-3.
Mishkina AI, Saushkin VV, Atabekov TA, Sazonova SI, Shipulin VV, Massalha S, et al. The value of cardiac sympathetic activity and mechanical dyssynchrony as cardiac resynchronization therapy response predictors: comparison between patients with ischemic and non-ischemic heart failure. J Nucl Cardiol. 2023;30(1):371–82. https://doi.org/10.1007/s12350-022-03046-w.
Assante R, Acampa W. Dual isotope and multidetector camera: the best choices for a specific end-point. J Nucl Cardiol. 2017;24(4):1370–3. https://doi.org/10.1007/s12350-016-0520-5.
Cantoni V, Green R, Acampa W, Zampella E, Assante R, Nappi C, et al. Diagnostic performance of myocardial perfusion imaging with conventional and CZT single-photon emission computed tomography in detecting coronary artery disease: a meta-analysis. J Nucl Cardiol. 2021;28(2):698–715. https://doi.org/10.1007/s12350-019-01747-3.
Gimelli A, Liga R, Giorgetti A, Genovesi D, Marzullo P. Assessment of myocardial adrenergic innervation with a solid-state dedicated cardiac cadmium-zinc-telluride camera: first clinical experience. Eur Heart J Cardiovasc Imaging. 2014;15(5):575–85. https://doi.org/10.1093/ehjci/jet258.
Acampa W, Buechel RR, Gimelli A. Low dose in nuclear cardiology: state of the art in the era of new cadmium-zinc-telluride cameras. Eur Heart J Cardiovasc Imaging. 2016;17(6):591–5. https://doi.org/10.1093/ehjci/jew036.
Ben-Haim S, Kacperski K, Hain S, Van Gramberg D, Hutton BF, Erlandsson K, et al. Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera. Eur J Nucl Med Mol Imaging. 2010;37(9):1710–21. https://doi.org/10.1007/s00259-010-1441-1.
Article PubMed PubMed Central Google Scholar
• Bellevre D, Manrique A, Legallois D, Bross S, Baavour R, Roth N, et al. First determination of the heart-to-mediastinum ratio using cardiac dual isotope (123I-MIBG/99mTc-tetrofosmin) CZT imaging in patients with heart failure: the ADRECARD study. Eur J Nucl Med Mol Imaging. 2015;42(12):1912–9. https://doi.org/10.1007/s00259-015-3141-3. This study is relevant as it is the first report of the feasibility of CZT-SPECT SDI protocols in clinical practice by D-SPECT camera.
• D’estanque E, Hedon C, Lattuca B, Bourdon A, Benkiran M, Verd A, et al. Optimization of a simultaneous dual-isotope 201Tl/123I-MIBG myocardial SPECT imaging protocol with a CZT camera for trigger zone assessment after myocardial infarction for routine clinical settings: are delayed acquisition and scatter correction necessary? J Nucl Cardiol. 2017; 24(4):1361-1369. https://doi.org/10.1007/s12350-016-0524-1. This study is relevant as evaluates the role of SPECT analysis in perfusion/innervation SDI imaging by CZT camera and investigates the real advantages of scatter correction.
• Blaire T, Bailliez A, Ben Bouallegue F, Bellevre D, Agostini D, Manrique A. Determination of the heart-to-mediastinum ratio of 123I-MIBG uptake using dual-isotope (123I-MIBG/99mTc-Tetrofosmin) multipinhole cadmium-zinc-telluride SPECT in patients with heart failure. J Nucl Med. 2018;59(2):251–8. https://doi.org/10.2967/jnumed.117.194373. This study is relevant as it first investigates the late HMR assessment by DNM camera, showing the need to use transaxial images and a linear correction equation to compare CZT-camera results to standard Anger camera.
Article CAS PubMed Google Scholar
• Assante R, D’Antonio A, Mannarino T, Nappi C, Gaudieri V, Zampella E, et al. Simultaneous assessment of myocardial perfusion and adrenergic innervation in patients with heart failure by low-dose dual-isotope CZT SPECT imaging. J Nucl Cardiol. 2022;29(6):3341–51. https://doi.org/10.1007/s12350-022-02951-4. This study is relevant as it demonstrates the feasibility of low-dose SDI protocol by CZT-SPECT in clinical practice, highlighting the possibility to obtain a full global and regional assessment of cardiac perfusion and innervation study in a single simultaneous acquisition time.
Article PubMed PubMed Central Google Scholar
Verschure DO, Bongers V, Hagen P, Somsen GA, van Eck-Smit BF, Verberne H. Impact of a predefined mediastinal ROI on interobserver variability of planar 123I-MIBG heart-to-mediastinum ratio. J Nucl Cardiol. 2014;21(3):605–13. https://doi.org/10.1007/s12350-014-9854-z.
Pellegrino T, Petretta M, De Luca S, Paolillo S, Boemio A, Carotenuto R, et al. Observer reproducibility of results from a low-dose 123I-metaiodobenzylguanidine cardiac imaging protocol in patients with heart failure. Eur J Nucl Med Mol Imaging. 2013;40(10):1549–57. https://doi.org/10.1007/s00259-013-2461-4.
Article CAS PubMed Google Scholar
Brumberg J, Blazhenets G, Schröter N, Frings L, Jost WH, Lapa C, et al. Imaging cardiac sympathetic innervation with MIBG: linear conversion of the heart-to-mediastinum ratio between different collimators. EJNMMI Phys. 2019;6(1):12. https://doi.org/10.1186/s40658-019-0250-2.
Article PubMed PubMed Central Google Scholar
Owenius R, Zanette M, Cella P. Variability in heart-to-mediastinum ratio from planar 123I-MIBG images of a thorax phantom for 6 common γ-camera models. J Nucl Med Technol. 2017;45(4):297–303. https://doi.org/10.2967/jnmt.117.196055.
Nakajima K, Okuda K, Yoshimura M, Matsuo S, Wakabayashi H, Imanishi Y, et al. Multicenter cross-calibration of I-123 metaiodobenzylguanidine heart-to-mediastinum ratios to overcome camera-collimator variations. J Nucl Cardiol. 2014;21(5):970–8. https://doi.org/10.1007/s12350-014-9916-2.
Article PubMed PubMed Central Google Scholar
Verschure DO, de Wit TC, Bongers V, Hagen PJ, Sonneck-Koenne C, D’Aron J, et al. 123I-MIBG heart-to-mediastinum ratio is influenced by high-energy photon penetration of collimator septa from liver and lung activity. Nucl Med Commun. 2015;36(3):279–85. https://doi.org/10.1097/MNM.0000000000000238.
Erlandsson K, Kacperski K, van Gramberg D, Hutton BF. Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology. Phys Med Biol. 2009;54(9):2635–49. https://doi.org/10.1088/0031-9155/54/9/003.
Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, Hutton B, Sharir T, Haim SB, Haim SB. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med. 2009;50(4):635–43. https://doi.org/10.2967/jnumed.108.060020.
Nakajima K, Okuda K, Yokoyama K, Yoneyama T, Tsuji S, Oda H, et al. Cross calibration of 123I-meta-iodobenzylguanidine heart-to-mediastinum ratio with D-SPECT planogram and Anger camera. Ann Nucl Med. 2017;31(8):605–15. https://doi.org/10.1007/s12149-017-1191-2.
Article CAS PubMed PubMed Central Google Scholar
Holstensson M, Erlandsson K, Poludniowski G, Ben-Haim S, Hutton BF. Model-based correction for scatter and tailing effects in simultaneous 99mTc and 123I imaging for a CdZnTe cardiac SPECT camera. Phys Med Biol. 2015;60(8):3045–63. https://doi.org/10.1088/0031-9155/60/8/3045.
Article CAS PubMed Google Scholar
Nakajima K, Verschure DO, Okuda K, Verberne HJ. Standardization of 123I-meta-iodobenzylguanidine myocardial sympathetic activity imaging: phantom calibration and clinical applications. Clin Transl Imaging. 2017;5(3):255–63. https://doi.org/10.1007/s40336-017-0230-2.
Article PubMed PubMed Central Google Scholar
Verschure DO, Poel E, Nakajima K, Okuda K, van Eck-Smit BLF, Somsen GA, et al. A European myocardial 123I-mIBG cross-calibration phantom study. J Nucl Cardiol. 2018;25(4):1191–7. https://doi.org/10.1007/s12350-017-0782-6.
Blaire T, Bailliez A, Ben Bouallegue F, Bellevre D, Agostini D, Manrique A. First assessment of simultaneous dual isotope ((123)I/(99m)Tc) cardiac SPECT on two different CZT cameras: a phantom study. J Nucl Cardiol. 2018;25(5):1692–704. https://doi.org/10.1007/s12350-017-0841-z.
Niimi T, Nanasato M, Sugimoto M, Maeda H. Comparative cardiac phantom study using Tc-99m/I-123 and Tl-201/I-123 tracers with cadmium-zinc-telluride detector-based single-photon emission computed tomography. Nucl Med Mol Imaging. 2019;53(1):57–63. https://doi.org/10.1007/s13139-018-0559-0.
Article CAS PubMed Google Scholar
Kacperski K, Erlandsson K, Ben-Haim S, Hutton BF. Iterative deconvolution of simultaneous 99mTc and 201Tl projection data measured on a CdZnTe-based cardiac SPECT scanner. Phys Med Biol. 2011;56(5):1397–414. https://doi.org/10.1088/0031-9155/56/5/012.
Article PubMed PubMed Central Google Scholar
Sood N, Al Badarin F, Parker M, Pullatt R, Jacobson AF, Bateman TM, et al. Resting perfusion MPI-SPECT combined with cardiac 123I-mIBG sympathetic innervation imaging improves prediction of arrhythmic events in non-ischemic cardiomyopathy patients: sub-study from the ADMIRE-HF trial. J Nucl Cardiol. 2013;20(5):813–20. https://doi.org/10.1007/s12350-013-9750-y.
Clements IP, Garcia EV, Chen J, Folks RD, Butler J, Jacobson AF. Quantitative iodine-123-metaiodobenzylguanidine (MIBG) SPECT imaging in heart failure with left ventricular systolic dysfunction: development and validation of automated procedures in conjunction with technetium-99m tetrofosmin myocardial perfusion SPECT. J Nucl Cardiol. 2016;23(3):425–35. https://doi.org/10.1007/s12350-015-0097-4.
Travin MI, Henzlova MJ, van Eck-Smit BLF, Jain D, Carrio I, Folks RD, et al. Assessment of (123)I-mIBG and (99 m)Tctetrofosmin single-photon emission computed tomographic images for the prediction of arrhythmic events in patients with ischemic heart failure: intermediate severity innervation defects are associated with higher arrhythmic risk. J Nucl Cardiol. 2017;24(2):377–91. https://doi.org/10.1007/s12350-015-0336-8.
留言 (0)