Hamon M, Biondi-Zoccai GGL, Malagutti P, Agostoni P, Morello R, Valgimigli M, Hamon M. Diagnostic performance of multislice spiral computed tomography of coronary arteries as compared with conventional invasive coronary angiography: a meta-analysis. J Am Coll Cardiol. 2006;48:1896–910.
Kulathilake KASH, Ranathunga L, Constantine GR, Abdullah NA. (2015) Region growing segmentation method for extracting vessel structures from coronary cine-angiograms. In: 2015 Moratuwa Eng. Res. Conf. MERCon. pp 142–147.
Kerkeni A, Benabdallah A, Manzanera A, Bedoui MH. A coronary artery segmentation method based on multiscale analysis and region growing. Comput Med Imaging Graph. 2016;48:49–61.
Ma G, Yang J, Zhao H. A coronary artery segmentation method based on region growing with variable sector search area. Technol Health Care. 2020;28:463–72.
Article PubMed PubMed Central Google Scholar
Cruz-Aceves I, Oloumi F, Rangayyan RM, Aviña-Cervantes JG, Hernandez-Aguirre A. Automatic segmentation of coronary arteries using Gabor filters and thresholding based on multiobjective optimization. Biomed Signal Process Control. 2016;25:76–85.
Zai S, Abbas A. (2018) An Effective Enhancement and Segmentation of Coronary Arteries in 2D Angiograms. In: 2018 Int. Conf. Smart Comput. Electron. Enterp. ICSCEE. pp 1–4.
Yi F, Moon I. Image segmentation: a survey of graph-cut methods. 2012 Int Conf Syst Inf ICSAI 2012. 2012. https://doi.org/10.1109/ICSAI.2012.6223428.
M’hiri F, Duong L, Desrosiers C, Leye M, Miró J, Cheriet M. A graph-based approach for spatio-temporal segmentation of coronary arteries in X-ray angiographic sequences. Comput Biol Med. 2016;79:45–58.
Mabrouk S, Oueslati C, Ghorbel F. Multiscale Graph cuts based method for coronary artery segmentation in Angiograms. IRBM. 2017;38:167–75.
Carballal A, Novoa FJ, Fernandez-Lozano C, García-Guimaraes M, Aldama-López G, Calviño-Santos R, Vazquez-Rodriguez JM, Pazos A. Automatic multiscale vascular image segmentation algorithm for coronary angiography. Biomed Signal Process Control. 2018;46:1–9.
Cervantes-Sanchez F, Cruz-Aceves I, Hernandez-Aguirre A, Hernandez-Gonzalez MA, Solorio-Meza SE. Automatic segmentation of coronary arteries in X-ray angiograms using Multiscale Analysis and Artificial neural networks. Appl Sci. 2019;9:5507.
Nasr-Esfahani E, Samavi S, Karimi N, Soroushmehr SMR, Ward K, Jafari MH, Felfeliyan B, Nallamothu B, Najarian K. Vessel extraction in X-ray angiograms using deep learning. Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Int Conf. 2016;2016:643–6.
Fan J, Yang J, Wang Y, Yang S, Ai D, Huang Y, Song H, Hao A, Wang Y. Multichannel fully Convolutional Network for coronary artery segmentation in X-Ray angiograms. IEEE Access. 2018;6:44635–43.
Yang S, Kweon J, Roh J-H, et al. Deep learning segmentation of major vessels in X-ray coronary angiography. Sci Rep. 2019;9:16897.
Article PubMed PubMed Central Google Scholar
Shin SY, Lee S, Yun ID, Lee KM. Deep vessel segmentation by learning graphical connectivity. Med Image Anal. 2019;58:101556.
Wang L, Liang D, Yin X, Qiu J, Yang Z, Xing J, Dong J, Ma Z. Coronary artery segmentation in angiographic videos utilizing spatial-temporal information. BMC Med Imaging. 2020;20:110.
Article PubMed PubMed Central Google Scholar
Wan T, Chen J, Zhang Z, Li D, Qin Z. Automatic vessel segmentation in X-ray angiogram using spatio-temporal fully-convolutional neural network. Biomed Signal Process Control. 2021;68:102646.
Zhu X, Cheng Z, Wang S, Chen X, Lu G. Coronary angiography image segmentation based on PSPNet. Comput Methods Programs Biomed. 2021;200:105897.
Gao Z, Wang L, Soroushmehr R, Wood A, Gryak J, Nallamothu B, Najarian K. Vessel segmentation for X-ray coronary angiography using ensemble methods with deep learning and filter-based features. BMC Med Imaging. 2022;22:10.
Article PubMed PubMed Central Google Scholar
Tao X, Dang H, Zhou X, Xu X, Xiong D. A Lightweight Network for Accurate Coronary Artery Segmentation using X-Ray angiograms. Front Public Health. 2022;10:892418.
Article PubMed PubMed Central Google Scholar
Lourenço-Silva J, Menezes MN, Rodrigues T, Silva B, Pinto FJ, Oliveira AL. Encoder-decoder architectures for clinically relevant Coronary artery segmentation. In: Bansal MS, Măndoiu I, Moussa M, Patterson M, Rajasekaran S, Skums P, Zelikovsky A, editors. Comput. Adv. Bio Med. Sci. Cham: Springer International Publishing; 2022. pp. 63–78.
Meng Y, Du Z, Zhao C, Dong M, Pienta D, Tang J, Zhou W. Automatic extraction of coronary arteries using deep learning in invasive coronary angiograms. Technol Health Care off J Eur Soc Eng Med. 2023;31:2303–17.
Wang G, Zhou P, Gao H, Qin Z, Wang S, Sun J, Yu H. Coronary vessel segmentation in coronary angiography with a multi-scale U-shaped transformer incorporating boundary aggregation and topology preservation. Phys Med Biol. 2024. https://doi.org/10.1088/1361-6560/ad0b63.
Article PubMed PubMed Central Google Scholar
Zhao C, Bober R, Tang H et al. (2021) Semantic Segmentation to Extract Coronary Arteries in Invasive Coronary Angiograms. 2020.05.26.20103440.
Jun TJ, Kweon J, Kim Y-H, Kim D. T-Net: nested encoder–decoder architecture for the main vessel segmentation in coronary angiography. Neural Netw. 2020;128:216–33.
Xian Z, Wang X, Yan S, Yang D, Chen J, Peng C. Main coronary vessel segmentation using deep learning in Smart Medical. Math Probl Eng. 2020;2020:8858344.
Zhang H, Zhang D, Gao Z, Zhang H. (2021) Joint Segmentation and Quantification of Main Coronary Vessels Using Dual-Branch Multi-scale Attention Network. In: Med. Image Comput. Comput. Assist. Interv. – MICCAI 2021 24th Int. Conf. Strasbg. Fr. Sept. 27–October 1 2021 Proc. Part I. Springer-Verlag, Berlin, Heidelberg, pp 369–378.
Park J, Kweon J, Kim YI, et al. Selective ensemble methods for deep learning segmentation of major vessels in invasive coronary angiography. Med Phys. 2023;50:7822–39.
Zhang H, Gao Z, Zhang D, Hau WK, Zhang H. Progressive perception learning for main coronary segmentation in X-Ray angiography. IEEE Trans Med Imaging. 2023;42:864–79.
Zhao C, Xu Z, Jiang J, Esposito M, Pienta D, Hung G-U, Zhou W. (2023) AGMN: Association Graph-based Graph Matching Network for Coronary Artery Semantic Labeling on Invasive Coronary Angiograms. Pattern Recognit 143:109789. This paper introduces a novel graph matching network for semantic labelling of coronary arteries.
Zhao C, Xu Z, Hung G-U, Zhou W. EAGMN: coronary artery semantic labeling using edge attention graph matching network. Comput Biol Med. 2023;166:107469.
Article PubMed PubMed Central Google Scholar
Zhao C, Esposito M, Xu Z, Zhou W. (2023) Hyper Association Graph matching with uncertainty quantification for Coronary Artery Semantic Labeling. https://doi.org/10.48550/arXiv.2308.10320
Dwivedi VP, Bresson X. (2021) A Generalization of Transformer Networks to Graphs. https://doi.org/10.48550/arXiv.2012.09699
Corbière C, THOME N, Bar-Hen A, Cord M, Pérez P. (2019) Addressing failure prediction by learning Model confidence. Adv Neural Inf Process Syst 32.
Tang H, Bober RR, Zhao C, Zhang C, Zhu H, He Z, Xu Z, Zhou W. 3D fusion between fluoroscopy angiograms and SPECT myocardial perfusion images to guide percutaneous coronary intervention. J Nucl Cardiol. 2022;29:1870–84.
Xu Z, Malhotra S, Zhao C, Jiang J, Vij A, Ye Z, Hua R, Li C, Wang C, Zhou W. (2023) 3D fusion between SPECT myocardial perfusion imaging and invasive coronary angiography to guide the treatment for patients with stable CAD. 2023.09.18.23295731.
Xu Z, Tang H, Malhotra S, et al. Three-dimensional Fusion of Myocardial Perfusion SPECT and Invasive Coronary Angiography guides coronary revascularization. J Nucl Cardiol. 2022;29:3267–77.
Zhao C, Vij A, Malhotra S, Tang J, Tang H, Pienta D, Xu Z, Zhou W. (2021) Automatic extraction and stenosis evaluation of coronary arteries in invasive coronary angiograms. Comput Biol Med 136:104667. This paper combines extraction of coronary and stenosis evaluation in a pipeline while enhancing dignostice accuracy amd efficiency in identifying coronary artery disease.
Freitas SA, Zeiser FA, Da Costa CA, De O, Ramos G. (2022) DeepCADD: A Deep Learning Architecture for Automatic Detection of Coronary Artery Disease. In: 2022 Int. Jt. Conf. Neural Netw. IJCNN. pp 1–8.
Han T, Ai D, Li X, Fan J, Song H, Wang Y, Yang J. Coronary artery stenosis detection via proposal-shifted spatial-temporal transformer in X-ray angiography. Comput Biol Med. 2023;153:106546.
Pang K, Ai D, Fang H, Fan J, Song H, Yang J. Stenosis-DetNet: sequence consistency-based stenosis detection for X-ray coronary angiography. Comput Med Imaging Graph. 2021;89:101900.
Moon JH, Lee DY, Cha WC, Chung MJ, Lee K-S, Cho BH, Choi JH. Automatic stenosis recognition from coronary angiography using convolutional neural networks. Comput Methods Programs Biomed. 2021;198:105819.
Avram R, Olgin JE, Ahmed Z, et al. CathAI: fully automated coronary angiography interpretation and stenosis estimation. Npj Digit Med. 2023;6:1–12.
Avram R, Labrecque-Langlais E, Corbin D et al. (2023) Evaluation of Stenoses Using AI Video Models Applied to Coronary Angiographies. https://doi.org/10.21203/rs.3.rs-3610879/v1
Morris PD, Curzen N, Gunn JP. Angiography-derived fractional Flow Reserve: more or less physiology? J Am Heart Assoc. 2020;9:e015586.
留言 (0)