Nucleolus assembly impairment leads to two-cell transcriptional repression via NPM1-mediated PRC2 recruitment

Koné, M. C. et al. Three-dimensional distribution of UBF and Nopp140 in relationship to ribosomal DNA transcription during mouse preimplantation development. Biol. Reprod. 94, 95 (2016).

Article  PubMed  Google Scholar 

Biggiogera, M. et al. Nucleolar distribution of proteins B23 and nucleolin in mouse preimplantation embryos as visualized by immunoelectron microscopy. Development 110, 1263–1270 (1990).

Article  CAS  PubMed  Google Scholar 

Kresoja-Rakic, J. & Santoro, R. Nucleolus and rRNA gene chromatin in early embryo development. Trends Genet. 35, 868–879 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fulka, H. & Aoki, F. Nucleolus precursor bodies and ribosome biogenesis in early mammalian embryos: old theories and new discoveries. Biol. Reprod. 94, 143 (2016).

Article  PubMed  Google Scholar 

Bouckenheimer, J. et al. Long non-coding RNAs in human early embryonic development and their potential in ART. Hum. Reprod. Update 23, 19–40 (2016).

Article  PubMed  Google Scholar 

Carlevaro-Fita, J. & Johnson, R. Global positioning system: understanding long noncoding RNAs through subcellular localization. Mol. Cell 73, 869–883 (2019).

Article  CAS  PubMed  Google Scholar 

Yan, L. et al. Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131–1139 (2013).

Article  CAS  PubMed  Google Scholar 

Li, D. F. et al. Activity dependent LoNA regulates translation by coordinating rRNA transcription and methylation. Nat. Commun. 9, 1726 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ishiuchi, T. et al. Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat. Struct. Mol. Biol. 22, 662–671 (2015).

Article  CAS  PubMed  Google Scholar 

Nachmani, D. et al. Germline NPM1 mutations lead to altered rRNA 2’-O-methylation and cause dyskeratosis congenita. Nat. Genet. 51, 1518–1529 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frottin, F. et al. The nucleolus functions as a phase-separated protein quality control compartment. Science 365, 342–347 (2019).

Article  CAS  PubMed  Google Scholar 

Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leung, A. K. et al. Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells. J. Cell Biol. 166, 787–800 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Percharde, M. et al. A LINE1-nucleolin partnership regulates early development and ESC identity. Cell 174, 391–405 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia, W. et al. Resetting histone modifications during human parental-to-zygotic transition. Science 365, 353–360 (2019).

Article  CAS  PubMed  Google Scholar 

Shandilya, J. et al. Acetylated NPM1 localizes in the nucleoplasm and regulates transcriptional activation of genes implicated in oral cancer manifestation. Mol. Cell Biol. 29, 5115–5127 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swaminathan, V., Kishore, A. H., Febitha, K. K. & Kundu, T. K. Human histone chaperone nucleophosmin enhances acetylation-dependent chromatin transcription. Mol. Cell Biol. 25, 7534–7545 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Federici, L. et al. Nucleophosmin C-terminal leukemia-associated domain interacts with G-rich quadruplex forming DNA. J. Biol. Chem. 285, 37138–37149 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laugesen, A., Højfeldt, J. W. & Helin, K. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol. Cell 74, 8–18 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, X. et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537, 558–562 (2016).

Article  CAS  PubMed  Google Scholar 

Vastenhouw, N. L. & Schier, A. F. Bivalent histone modifications in early embryogenesis. Curr. Opin. Cell Biol. 24, 374–386 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cela, I., Di Matteo, A. & Federici, L. Nucleophosmin in Its Interaction with ligands. Int. J. Mol. Sci. 21, 4885 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iarovaia, O. V. et al. Nucleolus: a central hub for nuclear functions. Trends Cell Biol. 29, 647–659 (2019).

Article  CAS  PubMed  Google Scholar 

Sauvageau, M. et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2, e01749 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Andersen, R. E. et al. The long noncoding RNA Pnky is a trans-acting regulator of cortical development in vivo. Dev. Cell 49, 632–642 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grote, P. et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell 24, 206–214 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, X. & Fu, X. D. Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat. Rev. Genet. 20, 503–519 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitrea, D. M. et al. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. eLife 5, e13571 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Mao, Y. S., Zhang, B. & Spector, D. L. Biogenesis and function of nuclear bodies. Trends Genet. 27, 295–306 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chujo, T., Yamazaki, T. & Hirose, T. Architectural RNAs (arcRNAs): a class of long noncoding RNAs that function as the scaffold of nuclear bodies. Biochim. Biophys. Acta 1859, 139–146 (2016).

Article  CAS  PubMed  Google Scholar 

Quinn, J. J. & Chang, H. Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62 (2016).

Article  CAS  PubMed  Google Scholar 

Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 39, 925–938 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chujo, T. & Hirose, T. Nuclear bodies built on architectural long noncoding RNAs: unifying principles of their construction and function. Mol. Cells 40, 889–896 (2017).

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif