Determinants of bone parameters in young paediatric cancer survivors: the iBoneFIT project

Miller, K. D. et al. Cancer statistics for adolescents and young adults, 2020. CA Cancer J. Clin. 70, 443–459 (2020).

Article  PubMed  Google Scholar 

Siegel, R. L. et al. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

Article  PubMed  Google Scholar 

Wilson, C. L. & Ness, K. K. Bone mineral density deficits and fractures in survivors of childhood cancer. Curr. Osteoporos. Rep. 11, 329–337 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Marcucci, G. et al. Bone health in childhood cancer: review of the literature and recommendations for the management of bone health in childhood cancer survivors. Ann. Oncol. 30, 908–920 (2019).

Article  CAS  PubMed  Google Scholar 

Kelly, P.M. & Pottenger, E. Bone health issues in the pediatric oncology patient. Semin. Oncol. Nurs. 38, 151275. https://doi.org/10.1016/J.SONCN.2022.151275 (2022).

Weaver, C. M. et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos. Int. 27, 1281–1386 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gómez-Bruton, A., Matute-Llorente, Á., González-Agüero, A., Casajús, J. A. & Vicente-Rodríguez, G. Plyometric exercise and bone health in children and adolescents: a systematic review. World J. Pediatr. 13, 112–121 (2017).

Article  PubMed  Google Scholar 

Othman, F., Guo, C. Y., Webber, C., Atkinson, S. A. & Barr, R. D. Osteopenia in survivors of Wilms tumor. Int J. Oncol. 20, 827–833 (2002).

PubMed  Google Scholar 

Chen, J. H., Liu, C., You, L. & Simmons, C. A. Boning up on Wolff’s Law: mechanical regulation of the cells that make and maintain bone. J. Biomech. 43, 108–118 (2010).

Article  PubMed  Google Scholar 

Jarfelt, M., Fors, H., Lannering, B. & Bjarnason, R. Bone mineral density and bone turnover in young adult survivors of childhood acute lymphoblastic leukaemia. Eur. J. Endocrinol. 154, 303–309 (2006).

Article  CAS  PubMed  Google Scholar 

Zymbal, V., Baptista, F., Letuchy, E. M., Janz, K. F. & Levy, S. M. Mediating effect of muscle on the relationship of physical activity and bone. Med. Sci. Sports Exerc. 51, 202–210 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Mostoufi-Moab, S. & Ward, L. M. Skeletal morbidity in children and adolescents during and following cancer therapy. Horm. Res. Paediatr. 91, 137–151 (2019).

Article  CAS  PubMed  Google Scholar 

Huncharek, M., Muscat, J. & Kupelnick, B. Impact of dairy products and dietary calcium on bone-mineral content in children: results of a meta-analysis. Bone 43, 312–321 (2008).

Article  CAS  PubMed  Google Scholar 

Rønne, M. S. et al. Bone mass development in childhood and its association with physical activity and vitamin D levels. The CHAMPS-Study DK. Calcif. Tissue Int. 104, 1–13 (2019).

Article  PubMed  Google Scholar 

Choudhary, A., Chou, J., Heller, G. & Sklar, C. Prevalence of vitamin D insufficiency in survivors of childhood cancer. Pediatr. Blood Cancer 60, 1237–1239 (2013).

Article  PubMed  Google Scholar 

Zhang, F. F., Saltzman, E., Must, A. & Parsons, S. K. Do childhood cancer survivors meet the diet and physical activity guidelines? A review of guidelines and literature. Int. J. Child Health Nutr. 1, 44–58. https://doi.org/10.6000/1929-4247.2012.01.01.06 (2012).

Vlachopoulos, D. et al. Determinants of bone outcomes in adolescent athletes at baseline: The PRO-BONE Study. Med. Sci. Sports Exerc. 49, 1389–1396 (2017).

Article  PubMed  Google Scholar 

Gil-Cosano, J. J. et al. The effect of an online exercise programme on bone health in paediatric cancer survivors (iBoneFIT): study protocol of a multi-centre randomized controlled trial. BMC Public Health 20, 1520 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Vandenbroucke, J. P. et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. PLoS Med. 4, 1628–1654 (2007).

Article  Google Scholar 

Moore, S. A. et al. Enhancing a somatic maturity prediction model. Med. Sci. Sports Exerc. 47, 1755–1764 (2015).

Article  PubMed  Google Scholar 

Gurney, J. G. et al. Bone mineral density among long-term survivors of childhood acute lymphoblastic leukemia: results from the St. Jude Lifetime Cohort Study. Pediatr. Blood Cancer 61, 1270–1276 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Migueles, J. H. et al. Comparability of published cut-points for the assessment of physical activity: Implications for data harmonization. Scand. J. Med. Sci. Sports 29, 566–574 (2019).

PubMed  Google Scholar 

Evenson, K. R., Catellier, D. J., Gill, K., Ondrak, K. S. & McMurray, R. G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 26, 1557–1565 (2008).

Article  PubMed  Google Scholar 

Weeks, B. K. & Beck, B. R. The BPAQ: a bone-specific physical activity assessment instrument. Osteoporos. Int 19, 1567–1577 (2008).

Article  CAS  PubMed  Google Scholar 

Ruiz, J. R. et al. Field-based fitness assessment in young people: the ALPHA health-related fitness test battery for children and adolescents. Br. J. Sports Med. 45, 518–524 (2011).

Article  PubMed  Google Scholar 

Ruiz, J. R. et al. Predictive validity of health-related fitness in youth: a systematic review. Br. J. Sports Med. 43, 909–923 (2009).

Article  CAS  PubMed  Google Scholar 

Julián Almárcegui, C. et al. Validity of a food-frequency questionnaire for estimating calcium intake in adolescent swimmers. Nutr. Hosp. 32, 1773–1779 (2015).

PubMed  Google Scholar 

Bolek-Berquist, J. et al. Use of a questionnaire to assess vitamin D status in young adults. Public Health Nutr. 12, 236–243 (2009).

Article  PubMed  Google Scholar 

Shuhart, C. R. et al. Executive Summary of the 2019 ISCD Position Development Conference on Monitoring Treatment, DXA Cross-calibration and Least Significant Change, Spinal Cord Injury, Peri-prosthetic and Orthopedic Bone Health, Transgender Medicine, and Pediatrics. J. Clin. Densitom. 22, 453–471 (2019).

Article  PubMed  Google Scholar 

Johnson, J. & Dawson-Hughes, B. Precision and stability of dual-energy X-ray absorptiometry measurements. Calcif. Tissue Int. 49, 174–178 (1991).

Article  CAS  PubMed  Google Scholar 

Beck, T. J., Ruff, C. B., Warden, K. E., Scott, W. W. & Rao, G. U. Predicting femoral neck strength from bone mineral data. A structural approach. Invest. Radio. 25, 6–18 (1990).

Article  CAS  Google Scholar 

Khoo, B. C. C. et al. In vivo short-term precision of hip structure analysis variables in comparison with bone mineral density using paired dual-energy X-ray absorptiometry scans from multi-center clinical trials. Bone 37, 112–121 (2005).

Article  PubMed  Google Scholar 

Hans, D., Goertzen, A. L., Krieg, M. A. & Leslie, W. D. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J. Bone Min. Res. 26, 2762–2769 (2011).

Article  Google Scholar 

Pothuaud, L. et al. Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J. Clin. Densitom. 12, 170–176 (2009).

Article  PubMed  Google Scholar 

Silva, B. C. et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J. Bone Min. Res. 29, 518–530 (2014).

Article  Google Scholar 

Shawwa, K. et al. Predictors of trabecular bone score in school children. Osteoporos. Int. 27, 703–710 (2016).

Article  CAS  PubMed  Google Scholar 

Del Rio, L., Di Gregorio, S. & Winzenrieth, R. WCO-IOF-ESCEO Seville 2014. Osteoporos. Int. 25(Suppl 2), 73–445 (2014).

Google Scholar 

Winzenrieth, R., Cormier, C., DiGregorio, S. & Del Rio, L. Influence of age and gender on spine bone density and TBS microarchitectural texture parameters in infants. Bone Abstracts 2, LB1. https://doi.org/10.1530/BONEABS.2.LB1 (2013).

Guagnelli, M. A. et al. Bone age as a correction factor for the analysis of trabecular bone score (TBS) in children. Arch. Osteoporos. 14, 26. https://doi.org/10.1007/S11657-019-0573-6 (2019).

Macdonald, H., Kontulainen, S., Petit, M., Janssen, P. & McKay, H. Bone strength and its determinants in pre- and early pubertal boys and girls. Bone 39, 598–608 (2006).

Article  PubMed  Google Scholar 

Davies, J. H., Evans, B. A. J. & Gregory, J. W. Bone mass acquisition in healthy children. Arch. Dis. Child 90, 373–378 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agostinete, R. R. et al. The mediating role of lean soft tissue in the relationship between somatic maturation and bone density in adolescent practitioners and non-practitioners of sports. Int. J. Environ. Res. Public Health 18, 3008 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Stevens, J. P. Applied Multivariate Statistics for the Social Sciences (Lawrence Erlbaum, Mahwah, NJ, 2002).

Daly, R. M., Stenevi-Lundgren, S., Linden, C. & Karlsson, M. K. Muscle determinants of bone mass, geometry and strength in prepubertal girls. Med. Sci. Sports Exerc. 40, 1135–1141 (2008).

Article  PubMed  Google Scholar 

Högler, W. et al. Incidence of skeletal complications during treatment of childhood acute lymphoblastic leukemia: comparison of fracture risk with the General Practice Research Database. Pediatr. Blood Cancer 48, 21–27 (2007).

Article 

留言 (0)

沒有登入
gif