Opinion: more mouse models and more translation needed for ALS

Feldman EL, et al. Amyotrophic lateral sclerosis. Lancet. 2022;400(10360):1363–80.

Article  CAS  PubMed  Google Scholar 

Vasta RC, Traynor R, Chio BJ. Unraveling the complex interplay between genes, environment, and climate in ALS. eBioMedicine. 2022;75:103795.

Article  PubMed  Google Scholar 

Hardiman O, et al. Amyotrophic lateral sclerosis. Nat Rev Dis Primers. 2017;3:17071.

Article  PubMed  Google Scholar 

Alonso A, et al. Incidence and lifetime risk of motor neuron disease in the United Kingdom: a population-based study. Eur J Neurol. 2009;16(6):745–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oliveira Santos M, et al. Clinical characteristics in amyotrophic lateral sclerosis with Sub-Saharan Africa ancestry - A portuguese hospital-based cohort study. Clin Neurol Neurosurg. 2023;227:107674.

Article  PubMed  Google Scholar 

Johnston CA, et al. Amyotrophic lateral sclerosis in an urban setting: a population based study of inner city London. J Neurol. 2006;253(12):1642–3.

Article  PubMed  Google Scholar 

Bendotti C, et al. Focus on the heterogeneity of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21(7–8):485–95.

Article  CAS  PubMed  Google Scholar 

van Rheenen W, et al. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat Genet. 2021;53(12):1636–48.

Article  PubMed  PubMed Central  Google Scholar 

Boros BD, et al. Antisense oligonucleotides for the study and treatment of ALS. Neurotherapeutics. 2022;19(4):1145–58.

Article  CAS  PubMed  Google Scholar 

Korobeynikov VA, et al. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis. Nat Med. 2022;28(1):104–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meijboom KE, Brown RH. Approaches to Gene Modulation Therapy for ALS. Neurotherapeutics. 2022;19(4):1159–79.

Article  CAS  PubMed  Google Scholar 

Miller T, et al. Phase 1–2 trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N Engl J Med. 2020;383(2):109–19.

Article  CAS  PubMed  Google Scholar 

Tran H, et al. Suppression of mutant C9orf72 expression by a potent mixed backbone antisense oligonucleotide. Nat Med. 2022;28(1):117–24.

Article  CAS  PubMed  Google Scholar 

Melamed Z, et al. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci. 2019;22(2):180–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma XR, et al. TDP-43 represses cryptic exon inclusion in the FTD-ALS gene UNC13A. Nature. 2022;603(7899):124–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown AL, et al. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature. 2022;603(7899):131–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baughn MW, et al. Mechanism of STMN2 cryptic splice-polyadenylation and its correction for TDP-43 proteinopathies. Science. 2023;379(6637):1140–9.

Article  CAS  PubMed  Google Scholar 

Rolfes L, et al. Amyotrophic lateral sclerosis patients show increased peripheral and intrathecal T-cell activation. Brain Commun. 2021;3(3):fcab157.

Article  PubMed  PubMed Central  Google Scholar 

Campisi L, et al. Clonally expanded CD8 T cells characterize amyotrophic lateral sclerosis-4. Nature. 2022;606(7916):945–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yildiz O, Schroth J, Tree T, Turner MR, Shaw PJ, Henson SM, Malaspina A. Senescent-like blood lymphocytes and disease progression in amyotrophic lateral sclerosis. Volume 10. Neurology: Neuroimmunology & Neuroinflammation; 2022. p. e200042. 1.

Google Scholar 

Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492–506.

Article  PubMed  PubMed Central  Google Scholar 

Blacher E, et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature. 2019;572(7770):474–80.

Article  CAS  PubMed  Google Scholar 

Rosen DR, et al. Mutations in Cu/Zn Superoxide-Dismutase Gene are Associated with familial amyotrophic-lateral-sclerosis. Nature. 1993;362(6415):59–62.

Article  CAS  PubMed  Google Scholar 

Gurney ME, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 1994;264(5166):1772–5.

Article  CAS  PubMed  Google Scholar 

Sreedharan J, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008;319(5870):1668–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vance C, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323(5918):1208–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Giorgio F, et al. Transgenic and physiological mouse models give insights into different aspects of amyotrophic lateral sclerosis. Dis Model Mech. 2019;12(1):dmm037424. https://doi.org/10.1242/dmm.037424.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Todd TW, Petrucelli L. Modelling amyotrophic lateral sclerosis in rodents. Nat Rev Neurosci. 2022;23(4):231–51.

Article  CAS  PubMed  Google Scholar 

Yang C, et al. Low-level overexpression of wild type TDP-43 causes late-onset, progressive neurodegeneration and paralysis in mice. PLoS ONE. 2022;17(2):e0255710.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fratta P, et al. Mice with endogenous TDP-43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis. EMBO J. 2018;37(11):e98684. https://doi.org/10.15252/embj.201798684.

Article  CAS  PubMed  PubMed Central  Google Scholar 

White MA, et al. TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nat Neurosci. 2018;21(4):552–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim E, et al. Coexistence of perseveration and apathy in the TDP-43(Q331K) knock-in mouse model of ALS-FTD. Transl Psychiatry. 2020;10(1):377.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ebstein SY, Yagudayeva I, Shneider NA. Mutant TDP-43 causes early-stage Dose-Dependent Motor Neuron Degeneration in a TARDBP Knockin Mouse Model of ALS. Cell Rep. 2019;26(2):364–73. e4.

Article  CAS  PubMed  Google Scholar 

Huang SL, et al. A robust TDP-43 knock-in mouse model of ALS. Acta Neuropathol Commun. 2020;8(1):3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Devoy A, et al. Humanized mutant FUS drives progressive motor neuron degeneration without aggregation in ‘FUSDelta14’ knockin mice. Brain. 2017;140(11):2797–805.

Article  PubMed  PubMed Central  Google Scholar 

Devoy A, et al. Generation and analysis of innovative genomically humanized knockin SOD1, TARDBP (TDP-43), and FUS mouse models. iScience. 2021;24(12):103463.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scekic-Zahirovic J, et al. Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss. EMBO J. 2016;35(10):1077–97.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif