Peptide Flexibility and the Hydrophobic Moment are Determinants to Evaluate the Clinical Potential of Magainins

Ageitos JM, Sánchez-Pérez A, Calo-Mata P, Villa TG (2017) Antimicrobial peptides (AMPs) Ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol 133:117–138. https://doi.org/10.1016/j.bcp.2016.09.018

Article  CAS  PubMed  Google Scholar 

Aisenbrey C, Marquette A, Bechinger B (2019) The mechanisms of action of cationic antimicrobial peptides refined by novel concepts from biophysical investigations. Adv Exp Med Biol 1117:33–64. https://doi.org/10.1007/978-981-13-3588-4_4

Article  CAS  PubMed  Google Scholar 

Amos ST, Vermeer LS, Ferguson PM, Kozlowska J, Davy M, Bui TT, Drake AF, Lorenz CD, Mason AJ (2016) Antimicrobial peptide potency is facilitated by greater conformational flexibility when binding to Gram-negative bacterial inner membranes. Sci Rep 22(6):37639. https://doi.org/10.1038/srep37639

Article  CAS  Google Scholar 

Balleza D, Alessandrini A, Beltrán García MJ (2019) Role of lipid composition, physicochemical interactions, and membrane mechanics in the molecular actions of microbial cyclic lipopeptides. J Membr Biol 252(2–3):131–157. https://doi.org/10.1007/s00232-019-00067-4

Article  CAS  PubMed  Google Scholar 

Balleza D, Mescola A, Alessandrini A (2020) Model lipid systems and their use to evaluate the phase state of biomembranes, their mechanical properties and the effect of non-conventional antibiotics: the case of daptomycin. Eur Biophys J 49(5):401–408. https://doi.org/10.1007/s00249-020-01445-w

Article  CAS  PubMed  Google Scholar 

Bechinger B (1999) The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta 1462(1–2):157–183. https://doi.org/10.1016/s0005-2736(99)00205-9

Article  CAS  PubMed  Google Scholar 

Bechinger B, Juhl DW, Glattard E, Aisenbrey C (2020) Revealing the mechanisms of synergistic action of two magainin antimicrobial peptides. Front Med Technol 2:615494. https://doi.org/10.3389/fmedt.2020.615494

Article  PubMed  PubMed Central  Google Scholar 

Bennett WF, Tieleman DP (2014) The importance of membrane defects-lessons from simulations. Acc Chem Res 47(8):2244–2251. https://doi.org/10.1021/ar4002729

Article  CAS  PubMed  Google Scholar 

Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. https://doi.org/10.1038/nrmicro1098

Article  CAS  PubMed  Google Scholar 

Carugo O, Argos P (1997) Correlation between side chain mobility and conformation in protein structures. Protein Eng 10(7):777–787. https://doi.org/10.1093/protein/10.7.777

Article  CAS  PubMed  Google Scholar 

Cheng KT, Wu CL, Yip BS, Chih YH, Peng KL, Hsu SY, Yu HY, Cheng JW (2020) The interactions between the antimicrobial peptide P-113 and living Candida albicans cells shed light on mechanisms of antifungal activity and resistance. Int J Mol Sci 21(7):2654. https://doi.org/10.3390/ijms21072654

Article  CAS  PubMed  PubMed Central  Google Scholar 

Denardi LB, de Arruda TP, Weiblen C, Ianiski LB, Stibbe PC, Pinto SC, Santurio JM (2022) In vitro activity of the antimicrobial peptides h-Lf1-11, MSI-78, LL-37, fengycin 2B, and magainin-2 against clinically important bacteria. Braz J Microbiol 53(1):171–177. https://doi.org/10.1007/s42770-021-00645-6

Article  CAS  PubMed  Google Scholar 

Dickey A, Faller R (2008) Examining the contributions of lipid shape and headgroup charge on bilayer behavior. Biophys J 95(6):2636–2646. https://doi.org/10.1529/biophysj.107.128074

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon DR, Jeffrey NR, Dubey VS, Leung KP (2009) Antimicrobial peptide inhibition of Porphyromonas gingivalis 381-induced hemagglutination is improved with a synthetic decapeptide. Peptides 30(12):2161–2167. https://doi.org/10.1016/j.peptides.2009.07.027

Article  CAS  PubMed  Google Scholar 

Eicher B, Marquardt D, Heberle FA, Letofsky-Papst I, Rechberger GN, Appavou MS, Katsaras J, Pabst G (2018) Intrinsic curvature-mediated transbilayer coupling in asymmetric lipid vesicles. Biophys J 114(1):146–157. https://doi.org/10.1016/j.bpj.2017.11.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eisenberg D, Weiss RM, Terwilliger TC (1982) The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299(5881):371–374. https://doi.org/10.1038/299371a0

Article  CAS  PubMed  Google Scholar 

Epand RM, Epand RF (2009) Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim Biophys Acta 1788(1):289–294. https://doi.org/10.1016/j.bbamem.2008.08.023

Article  CAS  PubMed  Google Scholar 

Fauchere J, Pliska V (1983) Hydrophobic parameters π of amino-acid side chains from the partitioning of N-acetyl-amino-acid amides. Eur J Med Chem 8:369–375

Google Scholar 

Fuchs PC, Barry AL, Brown SD (1998) In vitro antimicrobial activity of MSI-78, a magainin analog. Antimicrob Agents Chemother 42(5):1213–1216. https://doi.org/10.1128/AAC.42.5.1213

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gautier R, Douguet D, Antonny B, Drin G (2008) HELIQUEST: a web server to screen sequences with specific alpha-helical properties. Bioinformatics 24(18):2101–2102. https://doi.org/10.1093/bioinformatics/btn392

Article  CAS  PubMed  Google Scholar 

Ge Y, MacDonald DL, Holroyd KJ, Thornsberry C, Wexler H, Zasloff M (1999) In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob Agents Chemother 43(4):782–788. https://doi.org/10.1128/AAC.43.4.782

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gesell J, Zasloff M, Opella SJ (1997) Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an α-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J Biomol NMR 9(2):127–135. https://doi.org/10.1023/a:1018698002314

Article  CAS  PubMed  Google Scholar 

Gottler LM, Ramamoorthy A (2009) Structure, membrane orientation, mechanism, and function of pexiganan—a highly potent antimicrobial peptide designed from magainin. Biochim Biophys Acta 1788(8):1680–1686. https://doi.org/10.1016/j.bbamem.2008.10.009

Article  CAS  PubMed  Google Scholar 

Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5(6):951–959. https://doi.org/10.1586/14787210.5.6.951

Article  CAS  PubMed  Google Scholar 

Hallock KJ, Lee DK, Ramamoorthy A (2003) MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys J 84(5):3052–3060. https://doi.org/10.1016/S0006-3495(03)70031-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hills RD Jr, McGlinchey N (2016) Model parameters for simulation of physiological lipids. J Comput Chem 37(12):1112–1118. https://doi.org/10.1002/jcc.24324

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hossain F, Billah MM, Yamazaki M (2022) Single-cell analysis of the antimicrobial and bactericidal activities of the antimicrobial peptide magainin 2. Microbiol Spectr 10(4):e0011422. https://doi.org/10.1128/spectrum.00114-22

Article  CAS  PubMed  Google Scholar 

Juhl DW, Glattard E, Aisenbrey C, Bechinger B (2021) Antimicrobial peptides: mechanism of action and lipid-mediated synergistic interactions within membranes. Faraday Discuss 232:419–434. https://doi.org/10.1039/d0fd00041h

Article  CAS  PubMed  Google Scholar 

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kabelka I, Vácha R (2021) Advances in molecular understanding of α-helical membrane-active peptides. Acc Chem Res 54(9):2196–2204. https://doi.org/10.1021/acs.accounts.1c00047

Article  CAS  PubMed  Google Scholar 

Kandasamy SK, Larson RG (2004) Binding and insertion of alpha-helical anti-microbial peptides in POPC bilayers studied by molecular dynamics simulations. Chem Phys Lipids 132(1):113–132. https://doi.org/10.1016/j.chemphyslip.2004.09.011

Article  CAS  PubMed  Google Scholar 

Kaplan CW, Sim JH, Shah KR, Kolesnikova-Kaplan A, Shi W, Eckert R (2011) Selective membrane disruption: mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob Agents Chemother 55(7):3446–3452. https://doi.org/10.1128/AAC.00342-11

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karplus PA, Schulz GE (1985) Prediction of chain flexibility in proteins: a tool for the selection of peptide antigens. Naturwissenschaften 72:212–213. https://doi.org/10.1007/BF01195768

Article  CAS  Google Scholar 

Kučerka N, Nagle JF, Sachs JN, Feller SE, Pencer J, Jackson A, Katsaras J (2008) Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys J 95(5):2356–2367. https://doi.org/10.1529/biophysj.108.132662

Article  CAS 

留言 (0)

沒有登入
gif