Dementia and Geriatric Cognitive Disorders
Log in to MyKarger to check if you already have access to this content.
Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use read more
CHF 38.00 *
EUR 35.00 *
USD 39.00 *
Buy a Karger Article Bundle (KAB) and profit from a discount!
If you would like to redeem your KAB credit, please log in.
Save over 20% compared to the individual article price. Rent via DeepDyve Unlimited fulltext viewing of this article Organize, annotate and mark up articles Printing and downloading restrictions apply Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more Select* The final prices may differ from the prices shown due to specifics of VAT rules.
Article / Publication Details AbstractIntroduction: Carnosine show robust neuroprotective activity against neurodegenerative diseases. Here, we report that carnosine ameliorates diabetes-associated cognitive decline in vivo through the modulation of autophagy. Methods: A high-fat diet (HFD) and one intraperitoneal injection of 30 mg/kg streptozotocin (STZ) were used to induce type 2 diabetes mellitus in Sprague–Dawley rats. The rats were randomly divided into five groups: Control (CON), HFD/STZ, and three intragastric carnosine treatment groups over 12 weeks. Body weight, blood glucose levels, and cognitive function were continuously monitored. From excised rat hippocampi, we determined SOD activity and MDA levels; carnosine concentration; protein expressions of Akt, mTOR, and the autophagy markers LC3B and P62; and performed histopathological evaluations of the CA1 region. Results: The HFD/STZ groups showed increased blood glucose levels and decreased body weight compared to the CON group. However, there were no significant differences in body weight and blood glucose levels between carnosine-treated and -untreated HFD-STZ-induced diabetic rats. Diabetic animals showed obvious learning and memory impairments in the Morris water maze test compared to the CON group. Compared to those in the HFD/STZ group, carnosine increased SOD activity and decreased MDA levels, increased hippocampal carnosine concentration, increased p-Akt and p-mTOR expression, decreased LC3B and P62 expression, alleviated neuronal injuries, and improved cognitive performance in a dose-dependent manner. Conclusion: Independent of any hyperglycemic effect, carnosine may improve mild cognitive impairments by mitigating oxidative stress, activating the Akt/mTOR pathway, and modulating autophagy in the hippocampus of type 2 diabetic rats.
S. Karger AG, Basel
Article / Publication Details Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
留言 (0)