Defining species-specific and conserved interactions of apical membrane protein 1 during erythrocyte invasion in malaria to inform multi-species vaccines

World Health Organization. World Malaria report 2021. Available from: https://www.who.int/publications/i/item/9789240040496. 2021.

Mora C, McKenzie T, Gaw IM, Dean JM, von Hammerstein H, Knudson TA et al (2022) Over half of known human pathogenic diseases can be aggravated by climate change. Nat Clim Chang. https://doi.org/10.1038/s41558-022-01426-1

Article  PubMed  PubMed Central  Google Scholar 

Battle KE, Gething PW, Elyazar IR, Moyes CL, Sinka ME, Howes RE et al (2012) The global public health significance of Plasmodium vivax. Adv Parasitol 80:1–111. https://doi.org/10.1016/B978-0-12-397900-1.00001-3

Article  PubMed  Google Scholar 

Beeson JG, Chu CS, Richards JS, Nosten F, Fowkes FJ (2015) Plasmodium vivax malaria: challenges in diagnosis, treatment and elimination. Pediatr Infect Dis J 34(5):529–531. https://doi.org/10.1097/INF.0000000000000671

Article  PubMed  Google Scholar 

Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL et al (2009) Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis 9(9):555–566. https://doi.org/10.1016/S1473-3099(09)70177-X

Article  CAS  PubMed  Google Scholar 

Kho S, Qotrunnada L, Leonardo L, Andries B, Wardani PAI, Fricot A et al (2021) Hidden biomass of intact malaria parasites in the human spleen. N Engl J Med 384(21):2067–2069. https://doi.org/10.1056/NEJMc2023884

Article  PubMed  Google Scholar 

Anstey NM, Grigg MJ, Rajahram GS, Cooper DJ, William T, Kho S et al (2021) Knowlesi malaria: human risk factors, clinical spectrum, and pathophysiology. Adv Parasitol 113:1–43. https://doi.org/10.1016/bs.apar.2021.08.001

Article  PubMed  PubMed Central  Google Scholar 

RTSS Clinical Trials Partnership (2015) Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. https://doi.org/10.1016/S0140-6736(15)60721-8

Article  PubMed Central  Google Scholar 

Beeson JG, Kurtovic L, Dobano C, Opi DH, Chan JA, Feng G et al (2019) Challenges and strategies for developing efficacious and long-lasting malaria vaccines. Sci Transl Med. 11:474. https://doi.org/10.1126/scitranslmed.aau1458

Article  CAS  Google Scholar 

Tham WH, Beeson JG, Rayner JC (2017) Plasmodium vivax vaccine research—we’ve only just begun. Int J Parasitol 47(2–3):111–118. https://doi.org/10.1016/j.ijpara.2016.09.006

Article  PubMed  Google Scholar 

Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJ, Richards JS (2016) Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 40(3):343–372. https://doi.org/10.1093/femsre/fuw001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silva JC, Egan A, Arze C, Spouge JL, Harris DG (2015) A new method for estimating species age supports the coexistence of malaria parasites and their Mammalian hosts. Mol Biol Evol 32(5):1354–1364. https://doi.org/10.1093/molbev/msv005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taylor JE, Pacheco MA, Bacon DJ, Beg MA, Machado RL, Fairhurst RM et al (2013) The evolutionary history of Plasmodium vivax as inferred from mitochondrial genomes: parasite genetic diversity in the Americas. Mol Biol Evol 30(9):2050–2064. https://doi.org/10.1093/molbev/mst104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim C, Hansen E, DeSimone TM, Moreno Y, Junker K, Bei A et al (2013) Expansion of host cellular niche can drive adaptation of a zoonotic malaria parasite to humans. Nat Commun 4:1638. https://doi.org/10.1038/ncomms2612

Article  CAS  PubMed  Google Scholar 

Yap A, Azevedo MF, Gilson PR, Weiss GE, O’Neill MT, Wilson DW et al (2014) Conditional expression of apical membrane antigen 1 in Plasmodium falciparum shows it is required for erythrocyte invasion by merozoites. Cell Microbiol 16(5):642–656. https://doi.org/10.1111/cmi.12287

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stanisic DI, Richards JS, McCallum FJ, Michon P, King CL, Schoepflin S et al (2009) Immunoglobulin G subclass-specific responses against Plasmodium falciparum merozoite antigens are associated with control of parasitemia and protection from symptomatic illness. Infect Immun 77(3):1165–1174. https://doi.org/10.1128/IAI.01129-08

Article  CAS  PubMed  PubMed Central  Google Scholar 

Polley SD, Mwangi T, Kocken CH, Thomas AW, Dutta S, Lanar DE et al (2004) Human antibodies to recombinant protein constructs of Plasmodium falciparum apical membrane antigen 1 (AMA1) and their associations with protection from malaria. Vaccine 23(5):718–728. https://doi.org/10.1016/j.vaccine.2004.05.031

Article  CAS  PubMed  Google Scholar 

Reiling L, Boyle MJ, White MT, Wilson DW, Feng G, Weaver R et al (2019) Targets of complement-fixing antibodies in protective immunity against malaria in children. Nat Commun 10(1):610. https://doi.org/10.1038/s41467-019-08528-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thera MA, Doumbo OK, Coulibaly D, Laurens MB, Ouattara A, Kone AK et al (2011) A field trial to assess a blood-stage malaria vaccine. N Engl J Med 365(11):1004–1013. https://doi.org/10.1056/NEJMoa1008115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parker ML, Boulanger MJ (2015) An extended surface loop on toxoplasma gondii apical membrane antigen 1 (AMA1) governs ligand binding selectivity. PLoS ONE 10(5):e0126206. https://doi.org/10.1371/journal.pone.0126206

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vulliez-Le Normand B, Faber BW, Saul FA, van der Eijk M, Thomas AW, Singh B et al (2015) Crystal structure of Plasmodium knowlesi apical membrane antigen 1 and its complex with an invasion-inhibitory monoclonal antibody. PLoS ONE 10(4):e0123567. https://doi.org/10.1371/journal.pone.0123567

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vulliez-Le Normand B, Saul FA, Hoos S, Faber BW, Bentley GA (2017) Cross-reactivity between apical membrane antgen 1 and rhoptry neck protein 2 in P. vivax and P. falciparum: a structural and binding study. PLoS ONE 12(8):e0183198. https://doi.org/10.1371/journal.pone.0183198

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vulliez-Le Normand B, Tonkin ML, Lamarque MH, Langer S, Hoos S, Roques M et al (2012) Structural and functional insights into the malaria parasite moving junction complex. PLoS Pathog 8(6):e1002755. https://doi.org/10.1371/journal.ppat.1002755

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weiss GE, Gilson PR, Taechalertpaisarn T, Tham WH, de Jong NW, Harvey KL et al (2015) Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes. PLoS Pathog 11(2):e1004670. https://doi.org/10.1371/journal.ppat.1004670

Article  CAS  PubMed  PubMed Central  Google Scholar 

Besteiro S, Michelin A, Poncet J, Dubremetz JF, Lebrun M (2009) Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog 5(2):e1000309. https://doi.org/10.1371/journal.ppat.1000309

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B, Morlon-Guyot J et al (2011) The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. PLoS Pathog 7(2):e1001276. https://doi.org/10.1371/journal.ppat.1001276

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tonkin ML, Roques M, Lamarque MH, Pugniere M, Douguet D, Crawford J et al (2011) Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. Science 333(6041):463–467. https://doi.org/10.1126/science.1204988

Article  CAS  PubMed  Google Scholar 

Lamarque MH, Roques M, Kong-Hap M, Tonkin ML, Rugarabamu G, Marq JB et al (2014) Plasticity and redundancy among AMA-RON pairs ensure host cell entry of Toxoplasma parasites. Nat Commun 5:4098. https://doi.org/10.1038/ncomms5098

Article  CAS  PubMed  Google Scholar 

Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, Moch JK et al (2011) Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci U S A 108(32):13275–13280. https://doi.org/10.1073/pnas.1110303108

Article  PubMed  PubMed Central  Google Scholar 

Srinivasan P, Yasgar A, Luci DK, Beatty WL, Hu X, Andersen J et al (2013) Disrupting malaria parasite AMA1-RON2 interaction with a small molecule prevents erythrocyte invasion. Nat Commun 4:2261. https://doi.org/10.1038/ncomms3261

Article  CAS  PubMed  Google Scholar 

Drew DR, Sanders PR, Weiss G, Gilson PR, Crabb BS, Beeson JG (2018) Functional conservation of the AMA1 host-cell invasion ligand between P. falciparum and P. vivax: a novel platform to accelerate vaccine and drug development. J Infect Dis 217(3):498–507. https://doi.org/10.1093/infdis/jix583

Article  CAS  PubMed  Google Scholar 

Drew DR, Hodder AN, Wilson DW, Foley M, Mueller I, Siba PM et al (2012) Defining the antigenic diversity of Plasmodium falciparum apical membrane antigen 1 and the requirements for a multi-allele vaccine against malaria. PLoS ONE 7(12):e51023. https://doi.org/10.1371/journal.pone.0051023

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gruring C, Moon RW, Lim C, Holder AA, Blackman MJ, Duraisingh MT (2014) Human red blood cell-adapted Plasmodium knowlesi parasites: a new model system for malaria research. Cell Microbiol 16(5):612–620. https://doi.org/10.1111/cmi.12275

Article  CAS  PubMe

留言 (0)

沒有登入
gif