The α-tubulin acetyltransferase ATAT1: structure, cellular functions, and its emerging role in human diseases

Chaaban S, Brouhard GJ (2017) A microtubule bestiary: structural diversity in tubulin polymers. Mol Biol Cell 28:2924–2931. https://doi.org/10.1091/MBC.E16-05-0271

Article  CAS  PubMed  PubMed Central  Google Scholar 

Loreng TD, Smith EF (2017) The Central Apparatus of Cilia and Eukaryotic Flagella. Cold Spring Harb Perspect Biol 9. https://doi.org/10.1101/CSHPERSPECT.A028118

Roll-Mecak A (2020) The Tubulin Code in Microtubule Dynamics and Information Encoding. Dev Cell 54:7–20. https://doi.org/10.1016/J.DEVCEL.2020.06.008

Article  CAS  PubMed  Google Scholar 

Janke C, Magiera MM (2020) The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol 21:307–326. https://doi.org/10.1038/S41580-020-0214-3

Article  CAS  PubMed  Google Scholar 

Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Sci (1979) 325:834–840. https://doi.org/10.1126/SCIENCE.1175371

Article  CAS  Google Scholar 

Chu CW, Hou F, Zhang J et al (2011) A novel acetylation of β-tubulin by San modulates microtubule polymerization via down-regulating tubulin incorporation. Mol Biol Cell 22:448–456. https://doi.org/10.1091/MBC.E10-03-0203/ASSET/IMAGES/LARGE/448FIG7.JPEG

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu N, Xiong Y, Ren Y et al (2015) Proteomic profiling and functional characterization of multiple post-translational modifications of Tubulin. J Proteome Res 14:3292–3304. https://doi.org/10.1021/ACS.JPROTEOME.5B00308/SUPPL_FILE/PR5B00308_SI_004.PDF

Article  CAS  PubMed  Google Scholar 

Liu N, Xiong Y, Li S et al (2015) New HDAC6-mediated deacetylation sites of tubulin in the mouse brain identified by quantitative mass spectrometry. Sci Rep 5. https://doi.org/10.1038/SREP16869

Nekooki-Machida Y, Hagiwara H (2020) Role of tubulin acetylation in cellular functions and diseases. Med Mol Morphol 53:191–197. https://doi.org/10.1007/S00795-020-00260-8

Article  CAS  PubMed  Google Scholar 

Weinert BT, Wagner SA, Horn H et al (2011) Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal 4. https://doi.org/10.1126/SCISIGNAL.2001902

Lundby A, Lage K, Weinert BT et al (2012) Proteomic Analysis of Lysine Acetylation Sites in Rat tissues reveals Organ specificity and subcellular patterns. Cell Rep 2:419. https://doi.org/10.1016/J.CELREP.2012.07.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saunders HAJ, Johnson-Schlitz DM, Jenkins BV et al (2022) Acetylated α-tubulin K394 regulates microtubule stability to shape the growth of axon terminals. Curr Biol 32:614–630e5. https://doi.org/10.1016/J.CUB.2021.12.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu Z, Schaedel L, Portran D et al (2017) Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science (1979) 356:328–332. https://doi.org/10.1126/SCIENCE.AAI8764/SUPPL_FILE/MOVIES_S5-S10.ZIP

Piperno G, LeDizet M, Chang XJ (1987) Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J Cell Biol 104:289–302. https://doi.org/10.1083/JCB.104.2.289

Article  CAS  PubMed  Google Scholar 

Portran D, Schaedel L, Xu Z et al (2017) Tubulin acetylation protects long-lived microtubules against mechanical aging. Nat Cell Biol 19:391. https://doi.org/10.1038/NCB3481

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reed NA, Cai D, Blasius TL et al (2006) Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16:2166–2172. https://doi.org/10.1016/J.CUB.2006.09.014

Article  CAS  PubMed  Google Scholar 

Dompierre JP, Godin JD, Charrin BC et al (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 27:3571–3583. https://doi.org/10.1523/JNEUROSCI.0037-07.2007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan C, Wang F, Peng Y et al (2018) Microtubule Acetylation is required for mechanosensation in Drosophila. Cell Rep 25:1051–1065e6. https://doi.org/10.1016/J.CELREP.2018.09.075

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prokop A (2022) Microtubule regulation: transcending the tenet of K40 acetylation. Curr Biol 32:R126–R128. https://doi.org/10.1016/J.CUB.2021.12.018

Article  CAS  PubMed  Google Scholar 

Jenkins BV, Saunders HAJ, Record HL et al (2017) Effects of mutating α-tubulin lysine 40 on sensory dendrite development. J Cell Sci 130:4120–4131. http:///AM/EFFECTS-OF-MUTATING-TUBULIN-LYSINE-40-ON-SENSORY https://doi.org/10.1242/JCS.210203/265552.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaertig J, Cruz MA, Bowen J et al (1995) Acetylation of lysine 40 in alpha-tubulin is not essential in Tetrahymena Thermophila. J Cell Biol 129:1301–1310. https://doi.org/10.1083/JCB.129.5.1301

Article  CAS  PubMed  Google Scholar 

Shida T, Cueva JG, Xu Z et al (2010) The major α-tubulin K40 acetyltransferase αTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc Natl Acad Sci U S A 107:21517–21522. https://doi.org/10.1073/PNAS.1013728107/SUPPL_FILE/SD01.XLS

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim G-W, Li L, Ghorbani M et al (2013) Mice lacking α-tubulin acetyltransferase 1 are viable but display α-tubulin acetylation deficiency and dentate gyrus distortion. J Biol Chem 288:20334–20350. https://doi.org/10.1074/jbc.M113.464792

Article  CAS  PubMed  PubMed Central  Google Scholar 

Janke C, Montagnac G (2017) Causes and consequences of Microtubule Acetylation. Curr Biol 27:R1287–R1292. https://doi.org/10.1016/J.CUB.2017.10.044

Article  CAS  PubMed  Google Scholar 

Bär J, Popp Y, Bucher M, Mikhaylova M (2022) Direct and indirect effects of tubulin post-translational modifications on microtubule stability: insights and regulations. Biochim Biophys Acta Mol Cell Res 1869. https://doi.org/10.1016/J.BBAMCR.2022.119241

Magiera MM, Singh P, Gadadhar S, Janke C (2018) Tubulin posttranslational modifications and emerging links to Human Disease. Cell 173:1323–1327. https://doi.org/10.1016/J.CELL.2018.05.018

Article  CAS  PubMed  Google Scholar 

Castro-Castro A, Janke C, Montagnac G et al (2012) ATAT1/MEC-17 acetyltransferase and HDAC6 deacetylase control a balance of acetylation of alpha-tubulin and cortactin and regulate MT1-MMP trafficking and breast tumor cell invasion. Eur J Cell Biol 91:950–960. https://doi.org/10.1016/J.EJCB.2012.07.001

Article  CAS  PubMed  Google Scholar 

Kalebic N, Martinez C, Perlas E et al (2023) Tubulin Acetyltransferase αTAT1 Destabilizes Microtubules Independently of Its Acetylation Activity. https://doi.org/101128/MCB01044-12 33:1114–1123

Teoh JS, Vasudevan A, Wang W et al (2022) Synaptic branch stability is mediated by non-enzymatic functions of MEC-17/αTAT1 and ATAT-2. Sci Rep 12. https://doi.org/10.1038/S41598-022-18333-2

Coombes CE, Saunders HAJ, Mannava AG et al (2020) Non-enzymatic activity of the α-Tubulin acetyltransferase αTAT limits synaptic Bouton Growth in neurons. Curr Biol 30:610–623e5. https://doi.org/10.1016/J.CUB.2019.12.022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Topalidou I, Keller C, Kalebic N et al (2012) Genetically separable functions of the MEC-17 tubulin acetyltransferase affect Microtubule Organization. Curr Biol 22:1057–1065. https://doi.org/10.1016/J.CUB.2012.03.066

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akella JS, Wloga D, Kim J et al (2010) MEC-17 is an α-tubulin acetyltransferase. Nature 2010 467:7312 467:218–222. https://doi.org/10.1038/nature09324

Vetting MW, Luiz LP, Yu M et al (2005) Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys 433:212–226. https://doi.org/10.1016/J.ABB.2004.09.003

Article  CAS  PubMed  Google Scholar 

Friedmann DR, Aguilar A, Fan J et al (2012) Structure of the α-tubulin acetyltransferase, αTAT1, and implications for tubulin-specific acetylation. Proc Natl Acad Sci U S A 109:19655–19660. https://doi.org/10.1073/PNAS.1209357109/SUPPL_FILE/PNAS.201209357SI.PDF

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roy AD, Gross EG, Pillai GS et al (2022) Non-catalytic allostery in α-TAT1 by a phospho-switch drives dynamic microtubule acetylation. J Cell Biol 221. https://doi.org/10.1083/JCB.202202100

Davenport AM, Collins LN, Chiu H et al (2014) Structural and functional characterization of the α-tubulin acetyltransferase MEC-17. J Mol Biol 426:2605. https://doi.org/10.1016/J.JMB.2014.05.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taschner M, Vetter M, Lorentzen E (2012) Atomic resolution structure of human α-tubulin acetyltransferase bound to acetyl-CoA. Proc Natl Acad Sci U S A 109:19649–19654. https://doi.org/10.1073/PNAS.1209343109

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kormendi V, Szyk A, Piszczek G, Roll-Mecak A (2012) Crystal Structures of Tubulin Acetyltransferase Reveal a Conserved Catalytic Core and the plasticity of the essential N terminus. J Biol Chem 287:41569. https://doi.org/10.1074/JBC.C112.421222

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif