Advances in Single-Photon Emission Computed Tomography

Slomka P.J. Pan T. Berman D.S. et al.

Advances in SPECT and PET hardware.

Prog Cardiovasc Dis. 2015; 57: 566-578View in Article Google ScholarSlomka P.J. Miller R.J.H. Hu L.H. et al.

Solid-state detector SPECT myocardial perfusion imaging.

J Nucl Med. 2019; 60: 1194-1204View in Article Google ScholarDi Carli M.F.

Changing epidemiology of CAD: why should we pay attention?.

J Nucl Cardiol. 2021; 28: 386-388View in Article Google ScholarJouni H. Askew J.W. Crusan D.J. et al.

Temporal trends of single-photon emission computed tomography myocardial perfusion imaging in patients with coronary artery disease: a 22-year experience from a tertiary academic medical center.

Circ Cardiovasc Imaging. 2017; 10: e005628View in Article Google ScholarJespersen L. Hvelplund A. Abildstrøm S.Z. et al.

Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events.

Eur Heart J. 2012; 33: 734-744View in Article Google ScholarMaddox T.M. Stanislawski M.A. Grunwald G.K. et al.

Nonobstructive coronary artery disease and risk of myocardial infarction.

JAMA. 2014; 312: 1754-1763View in Article Google ScholarVirani S.S. Alonso A. Benjamin E.J. et al.

American heart association council on epidemiology and prevention statistics committee and stroke statistics subcommittee. heart disease and stroke statistics-2020 update: a report from the american heart association.

Circulation. 2020; 141: e139-e596View in Article Google ScholarGimelli A. Bottai M. Genovesi D. et al.

High diagnostic accuracy of low-dose gated-SPECT with solid-state ultrafast detectors: preliminary clinical results.

Eur J Nucl Med Mol Imaging. 2012; 39: 83-90View in Article Google ScholarSharir T. Pinskiy M. Pardes A. et al.

Comparison of the diagnostic accuracies of very low stress-dose with standard-dose myocardial perfusion imaging: automated quantification of one-day, stress-first SPECT using a CZT camera.

J Nucl Cardiol. 2016; 23: 11-20View in Article Google ScholarNakazato R. Tamarappoo B.K. Kang X. et al.

Quantitative upright-supine high-speed SPECT myocardial perfusion imaging for detection of coronary artery disease: correlation with invasive coronary angiography.

J Nucl Med. 2010; 51: 1724-1731View in Article Google ScholarDuvall W.L. Slomka P.J. Gerlach J.R. et al.

High-efficiency SPECT MPI: comparison of automated quantification, visual interpretation, and coronary angiography.

J Nucl Cardiol. 2013; 20: 763-773View in Article Google ScholarNakazato R. Slomka P.J. Fish M. et al.

Quantitative high-efficiency cadmium-zinc-telluride SPECT with dedicated parallel-hole collimation system in obese patients: results of a multi-center study.

J Nucl Cardiol. 2015; 22: 266-275View in Article Google ScholarZhang Y.Q. Jiang Y.F. Hong L. et al.

Diagnostic value of cadmium-zinc-telluride myocardial perfusion imaging versus coronary angiography in coronary artery disease: a PRISMA-compliant meta-analysis.

Medicine (Baltim). 2019; 98: e14716View in Article Google ScholarOldan J.D. Shaw L.K. Hofmann P. et al.

Prognostic value of the cadmium-zinc-telluride camera: a comparison with a conventional (Anger) camera.

J Nucl Cardiol. 2016; 23: 1280-1287View in Article Google ScholarEngbers E.M. Timmer J.R. Mouden M. et al.

Prognostic value of myocardial perfusion imaging with a cadmium-zinc-telluride SPECT Camera in patients suspected of having coronary artery disease.

J Nucl Med. 2017; 58: 1459-1463View in Article Google ScholarOtaki Y. Betancur J. Sharir T. et al.

5-year prognostic value of quantitative versus visual MPI in subtle perfusion defects: results from REFINE SPECT.

JACC Cardiovasc Imaging. 2020; 13: 774-785View in Article Google ScholarBorges-Neto S. Pagnanelli R.A. Shaw L.K. et al.

Clinical results of a novel wide beam reconstruction method for shortening scan time of Tc-99m cardiac SPECT perfusion studies.

J Nucl Cardiol. 2007; 14: 555-565View in Article Google ScholarAli I. Ruddy T.D. Almgrahi A. et al.

Half-time SPECT myocardial perfusion imaging with attenuation correction.

J Nucl Med. 2009; 50: 554-562View in Article Google ScholarMurthy V.L. Bateman T.M. Beanlands R.S. et al.

Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI cardiovascular council and the ASNC.

J Nucl Med. 2018; 59: 273-293View in Article Google ScholarWells R.G. Timmins R. Klein R. et al.

Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model.

J Nucl Med. 2014; 55: 1685-1691View in Article Google ScholarTimmins R. Klein R. Petryk J. et al.

Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model.

Med Phys. 2015; 42: 5075-5083View in Article Google ScholarBen Bouallègue F. Roubille F. Lattuca B. et al.

SPECT myocardial perfusion reserve in patients with multivessel coronary disease: correlation with angiographic findings and invasive fractional flow reserve measurements.

J Nucl Med. 2015; 56: 1712-1717View in Article Google ScholarShiraishi S. Sakamoto F. Tsuda N. et al.

Prediction of left main or 3-vessel disease using myocardial perfusion reserve on dynamic thallium-201 single-photon emission computed tomography with a semiconductor gamma camera.

Circ J. 2015; 79: 623-631View in Article Google ScholarMiyagawa M. Nishiyama Y. Uetani T. et al.

Estimation of myocardial flow reserve utilizing an ultrafast cardiac SPECT: comparison with coronary angiography, fractional flow reserve, and the SYNTAX score.

Int J Cardiol. 2017; 244: 347-353View in Article Google Scholarde Souza A.C.D.A.H. Gonçalves B.K.D. Tedeschi A.L. et al.

Quantification of myocardial flow reserve using a gamma camera with solid-state cadmium-zinc-telluride detectors: relation to angiographic coronary artery disease.

J Nucl Cardiol. 2021; 28: 876-884View in Article Google ScholarAcampa W. Assante R. Mannarino T. et al.

Low-dose dynamic myocardial perfusion imaging by CZT-SPECT in the identification of obstructive coronary artery disease.

Eur J Nucl Med Mol Imaging. 2020; 47: 1705-1712View in Article Google ScholarPang Z. Wang J. Li S. et al.

Diagnostic analysis of new quantitative parameters of low-dose dynamic myocardial perfusion imaging with CZT SPECT in the detection of suspected or known coronary artery disease.

Int J Cardiovasc Imaging. 2021; 37: 367-378View in Article Google ScholarZavadovsky K.V. Mochula A.V. Maltseva A.N. et al.

The diagnostic value of SPECT CZT quantitative myocardial blood flow in high-risk patients.

J Nucl Cardiol. 2022; 29: 1051-1063View in Article Google ScholarNkoulou R. Fuchs T.A. Pazhenkottil A.P. et al.

Absolute myocardial blood flow and flow reserve assessed by gated SPECT with cadmium-zinc-telluride detectors using 99mTc-tetrofosmin: head-to-head comparison with 13N-ammonia PET.

J Nucl Med. 2016; 57: 1887-1892View in Article Google ScholarWells R.G. Marvin B. Poirier M. et al.

Optimization of SPECT measurement of myocardial blood flow with corrections for attenuation, motion, and blood binding compared with PET.

J Nucl Med. 2017; 58: 2013-2019View in Article Google ScholarAgostini D. Roule V. Nganoa C. et al.

First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study.

Eur J Nucl Med Mol Imaging. 2018; 45: 1079-1090View in Article Google ScholarGiubbini R. Bertoli M. Durmo R. et al.

Comparison between N13NH3-PET and 99mTc-tetrofosmin-CZT-SPECT in the evaluation of absolute myocardial blood flow and flow reserve.

J Nucl Cardiol. 2021; 28: 1906-1918View in Article Google ScholarAcampa W. Zampella E. Assante R. et al.

Quantification of myocardial perfusion reserve by CZT-SPECT: a head-to-head comparison with 82rubidium PET.

J Nucl Cardiol. 2021; 28: 2827-2839View in Article Google ScholarPanjer M. Dobrolinska M. Wagenaar N.R.L. et al.

Diagnostic accuracy of dynamic CZT-SPECT in coronary artery disease. A systematic review and meta-analysis.

J Nucl Cardiol. 2022; 29 (Epub ahead of print. PMID: 34350553): 1686-1697View in Article Google ScholarWells R.G. Radonjic I. Clackdoyle D. et al.

Test-retest precision of myocardial blood flow measurements with 99mTc-tetrofosmin and solid-state detector single photon emission computed tomography.

Circ Cardiovasc Imaging. 2020; 13: e009769View in Article Google Scholarde Souza A.C.D.A.H. Harms H.J. Martell L. et al.

Accuracy and reproducibility of myocardial blood flow quantification by single photon emission computed tomography imaging in patients with known or suspected coronary artery disease.

Circ Cardiovasc Imaging. 2022; 15: e013987View in Article Google ScholarLiga R. Neglia D. Kusch A. et al.

Prognostic role of dynamic CZT imaging in CAD patients: interaction between absolute flow and CAD burden.

JACC Cardiovasc Imaging. 2022; 15: 540-542View in Article Google ScholarDaou D. Sabbah R. Coaguila C. et al.

Feasibility of data-driven cardiac respiratory motion correction of myocardial perfusion CZT SPECT: a pilot study.

J Nucl Cardiol. 2017; 24: 1598-1607View in Article Google ScholarChan C. Harris M. Le M. et al.

End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system.

Phys Med Biol. 2014; 59: 6267-6287View in Article Google ScholarKennedy J.A. William Strauss H.

Motion detection and amelioration in a dedicated cardiac solid-state CZT SPECT device.

Med Biol Eng Comput. 2017; 55: 663-671View in Article Google ScholarShrestha U. Sciammarella M. Alhassen F. et al.

Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and 99mTc-tetrofosmin: method and validation.

J Nucl Cardiol. 2017; 24: 268-277View in Article Google ScholarReutter B.W. Gullberg G.T. Huesman R.H.

Direct least-squares estimation of spatiotemporal distributions from dynamic SPECT projections using a spatial segmentation and temporal B-splines.

IEEE Trans Med Imaging. 2000; 19: 434-450View in Article Google ScholarSlomka P.J. Miller R.J. Isgum I. et al.

Application and translation of artificial intelligence to cardiovascular imaging in nuclear medicine and noncontrast CT.

Semin Nucl Med. 2020; 50: 357-366View in Article Google ScholarMiller R.J.H. Huang C. Liang J.X. et al.

Artificial intelligence for disease diagnosis and risk prediction in nuclear cardiology.

J Nucl Cardiol. 2022; 29: 1754-1762View in Article Google Scholar

留言 (0)

沒有登入
gif