SIRT1 as a Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease

Vogelmeier C, Criner G, Martinez F, Anzueto A, Barnes P, Bourbeau J et al (2017) Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Critic Care Med 195(5):557–582. https://doi.org/10.1164/rccm.201701-0218PP

Article  CAS  Google Scholar 

Hogea S, Tudorache E, Fildan A, Fira-Mladinescu O, Marc M, Oancea C (2020) Risk factors of chronic obstructive pulmonary disease exacerbations. Clin Respir J 14(3):183–197. https://doi.org/10.1111/crj.13129

Article  PubMed  Google Scholar 

Christenson SA, Smith BM, Bafadhel M, Putcha N (2022) Chronic obstructive pulmonary disease. Lancet 399(10342):2227–2242. https://doi.org/10.1016/s0140-6736(22)00470-6

Article  PubMed  Google Scholar 

Fu YS, Kang N, Yu Y, Mi Y, Guo J, Wu J et al (2022) Polyphenols, flavonoids and inflammasomes: the role of cigarette smoke in COPD. Eur Respir Rev. https://doi.org/10.1183/16000617.0028-2022

Article  PubMed  PubMed Central  Google Scholar 

Lu Z, Coll P, Maitre B, Epaud R, Lanone S (2022) Air pollution as an early determinant of COPD. Eur Respir Rev. https://doi.org/10.1183/16000617.0059-2022

Article  PubMed  PubMed Central  Google Scholar 

Martinez CH, Han MK (2012) Contribution of the environment and comorbidities to chronic obstructive pulmonary disease phenotypes. Med Clin North Am 96(4):713–727. https://doi.org/10.1016/j.mcna.2012.02.007

Article  PubMed  PubMed Central  Google Scholar 

Eapen M, Myers S, Walters E, Sohal S (2017) Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox. Expert Rev Respir Med 11(10):827–839. https://doi.org/10.1080/17476348.2017.1360769

Article  CAS  PubMed  Google Scholar 

Brandsma CA, Van den Berge M, Hackett TL, Brusselle G, Timens W (2020) Recent advances in chronic obstructive pulmonary disease pathogenesis: from disease mechanisms to precision medicine. J Pathol 250(5):624–635. https://doi.org/10.1002/path.5364

Article  PubMed  Google Scholar 

Ruaro B, Salton F, Braga L, Wade B, Confalonieri P, Volpe MC et al (2021) The history and mystery of alveolar epithelial type II cells: focus on their physiologic and pathologic role in lung. Int J Mol Sci. https://doi.org/10.3390/ijms22052566

Article  PubMed  PubMed Central  Google Scholar 

Ferrera MC, Labaki WW, Han MK (2021) Advances in chronic obstructive pulmonary disease. Annu Rev Med 72:119–134. https://doi.org/10.1146/annurev-med-080919-112707

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan S, Selemidis S, Bozinovski S, Vlahos R (2019) Pathobiological mechanisms underlying metabolic syndrome (MetS) in chronic obstructive pulmonary disease (COPD): clinical significance and therapeutic strategies. Pharmacol Ther 198:160–188. https://doi.org/10.1016/j.pharmthera.2019.02.013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lv Y, Lin S, Peng F (2017) SIRT1 gene polymorphisms and risk of lung cancer. Cancer Manage Res 9:381–386. https://doi.org/10.2147/cmar.S142677

Article  CAS  Google Scholar 

Huang C, Jiang S, Gao S, Wang Y, Cai X, Fang J et al (2022) Sirtuins: research advances on the therapeutic role in acute kidney injury. Phytomedicine 101:154122. https://doi.org/10.1016/j.phymed.2022.154122

Article  CAS  PubMed  Google Scholar 

Khawar MB, Sohail AM, Li W (2022) SIRT1: a key player in male reproduction. Life. https://doi.org/10.3390/life12020318

Article  PubMed  PubMed Central  Google Scholar 

Yang Y, Zhang S, Guan J, Jiang Y, Zhang J, Luo L et al (2022) SIRT1 attenuates neuroinflammation by deacetylating HSPA4 in a mouse model of Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis 1868(5):166365. https://doi.org/10.1016/j.bbadis.2022.166365

Article  CAS  PubMed  Google Scholar 

Shen P, Deng X, Chen Z, Ba X, Qin K, Huang Y et al (2021) SIRT1: a potential therapeutic target in autoimmune diseases. Front Immunol 12:779177. https://doi.org/10.3389/fimmu.2021.779177

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voelter-Mahlknecht S, Mahlknecht U (2006) Cloning, chromosomal characterization and mapping of the NAD-dependent histone deacetylases gene sirtuin 1. Int J Mol Med 17(1):59–67

CAS  PubMed  Google Scholar 

Xu C, Wang L, Fozouni P, Evjen G, Chandra V, Jiang J et al (2020) SIRT1 is downregulated by autophagy in senescence and ageing. Nat Cell Biol 22(10):1170–1179. https://doi.org/10.1038/s41556-020-00579-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giblin W, Skinner M, Lombard D (2014) Sirtuins: guardians of mammalian healthspan. Trends Genet 30(7):271–286. https://doi.org/10.1016/j.tig.2014.04.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frye R (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273(2):793–798. https://doi.org/10.1006/bbrc.2000.3000

Article  CAS  PubMed  Google Scholar 

Finkel T, Deng C, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460(7255):587–591. https://doi.org/10.1038/nature08197

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kabiljo J, Murko C, Pusch O, Zupkovitz G (2019) Spatio-temporal expression profile of sirtuins during aging of the annual fish Nothobranchius furzeri. Gene Expr Patterns 33:11–19. https://doi.org/10.1016/j.gep.2019.05.001

Article  CAS  PubMed  Google Scholar 

Haigis M, Guarente L (2006) Mammalian sirtuins–Emerging roles in physiology, aging, and calorie restriction. Genes Dev 20(21):2913–2921. https://doi.org/10.1101/gad.1467506

Article  CAS  PubMed  Google Scholar 

Tang BL (2016) Sirt1 and the mitochondria. Mol Cells 39(2):87–95. https://doi.org/10.14348/molcells.2016.2318

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Yang J, Hong T, Chen X, Cui L (2019) SIRT2: controversy and multiple roles in disease and physiology. Ageing Res Rev 55:100961. https://doi.org/10.1016/j.arr.2019.100961

Article  CAS  PubMed  Google Scholar 

Zhang XY, Li W, Zhang JR, Li CY, Zhang J, Lv XJ (2022) Roles of sirtuin family members in chronic obstructive pulmonary disease. Respir Res 23(1):66. https://doi.org/10.1186/s12931-022-01986-y

Article  PubMed  PubMed Central  Google Scholar 

Korytina GF, Akhmadishina LZ, Aznabaeva YG, Kochetova OV, Zagidullin NS, Kzhyshkowska JG et al (2019) Associations of the NRF2/KEAP1 pathway and antioxidant defense gene polymorphisms with chronic obstructive pulmonary disease. Gene 692:102–112. https://doi.org/10.1016/j.gene.2018.12.061

Article  CAS  PubMed  Google Scholar 

Bakke PS, Zhu G, Gulsvik A, Kong X, Agusti AG, Calverley PM et al (2011) Candidate genes for COPD in two large data sets. Eur Respir J 37(2):255–263. https://doi.org/10.1183/09031936.00091709

Article  CAS  PubMed  Google Scholar 

Zhang M, Zhang Y, Roth M, Zhang L, Shi R, Yang X et al (2020) Sirtuin 3 inhibits airway epithelial mitochondrial oxidative stress in cigarette smoke-induced COPD. Oxid Med Cell Longev 2020:7582980. https://doi.org/10.1155/2020/7582980

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Wang H, Luo G, Dai X (2014) SIRT4 inhibits cigarette smoke extracts-induced mononuclear cell adhesion to human pulmonary microvascular endothelial cells via regulating NF-κB activity. Toxicol Lett 226(3):320–327. https://doi.org/10.1016/j.toxlet.2014.02.022

Article  CAS  PubMed  Google Scholar 

Wang Y, Zhu Y, Xing S, Ma P, Lin D (2015) SIRT5 prevents cigarette smoke extract-induced apoptosis in lung epithelial cells via deacetylation of FOXO3. Cell Stress Chaperones 20(5):805–810. https://doi.org/10.1007/s12192-015-0599-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kato R, Mizuno S, Kadowaki M, Shiozaki K, Akai M, Nakagawa K et al (2016) Sirt1 expression is associated with CD31 expression in blood cells from patients with chronic obstructive pulmonary disease. Respir Res 17(1):139. https://doi.org/10.1186/s12931-016-0452-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang S, Wright J, Bauter M, Seweryniak K, Kode A, Rahman I (2007) Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. Am J Physiol Lung Cell Mol Physiol 292(2):L567–L576. https://doi.org/10.1152/ajplung.00308.2006

Article  CAS  PubMed  Google Scholar 

Iqbal IK, Bajeli S, Sahu S, Bhat SA, Kumar A (2021) Hydrogen sulfide-induced GAPDH sulfhydration disrupts the CCAR2-SIRT1 interaction to initiate autophagy. Autophagy 17(11):3511–3529. https://doi.org/10.1080/15548627.2021.1876342

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif