Development of an implantable collamer lens sizing model: a retrospective study using ANTERION swept-source optical coherence tomography and a literature review

Chen L-J, Chang Y-J, Kuo JC, Rajagopal R, Azar DT. Metaanalysis of cataract development after phakic intraocular lens surgery. J Cataract Refractive Surg. 2008;34:1181–200.

Article  Google Scholar 

Galvis V, Villamil JF, Acuña MF, Camacho PA, Merayo-Lloves J, Tello A, et al. Long-term endothelial cell loss with the iris-claw intraocular phakic lenses (Artisan®). Graefes Arch Clin Exp Ophthalmol. 2019;257:2775–87.

Article  PubMed  Google Scholar 

Alfonso JF, Fernández-Vega L, Lisa C, Fernandes P, González-Meijome J, Montés-Micó R. Long-term evaluation of the central vault after phakic Collamer® lens (ICL) implantation using OCT. Graefes Arch Clin Exp Ophthalmol. 2012;250:1807–12.

Article  PubMed  Google Scholar 

Wan T, Yin H, Yang Y, Wu F, Wu Z, Yang Y. Comparative study of anterior segment measurements using 3 different instruments in myopic patients after ICL implantation. BMC Ophthalmol. 2019;19:182.

Article  PubMed  PubMed Central  Google Scholar 

Kang EM, Ryu IH, Lee G, Kim JK, Lee IS, Jeon GH, et al. Development of a web-based ensemble machine learning application to select the optimal size of posterior Chamber Phakic intraocular Lens. Volume 10. Trans Vis Sci Tech. The Association for Research in Vision and Ophthalmology; 2021. pp. 5–5.

Fernandes P, González-Méijome JM, Madrid-Costa D, Ferrer-Blasco T, Jorge J, Montés-Micó R. Implantable collamer posterior chamber intraocular lenses: a review of potential complications. J Refract Surg. 2011;27:765–76.

Article  PubMed  Google Scholar 

Choi H, Kim T, Kim SJ, Sa BG, Ryu IH, Lee IS, et al. Predicting Postoperative Anterior Chamber Angle for Phakic intraocular Lens Implantation using Preoperative Anterior Segment Metrics. Translational Vis Sci Technol. 2023;12:10.

Article  Google Scholar 

Yang W, Zhao J, Sun L, Zhao J, Niu L, Wang X, et al. Four-year observation of the changes in corneal endothelium cell density and correlated factors after Implantable Collamer Lens V4c implantation. Br J Ophthalmol BMJ Publishing Group Ltd. 2021;105:625–30.

Google Scholar 

Shi M, Kong J, Li X, Yan Q, Zhang J. Observing implantable collamer lens dislocation by panoramic ultrasound biomicroscopy. Eye Nat Publishing Group. 2015;29:499–504.

CAS  Google Scholar 

Lee D-H, Choi S-H, Chung E-S, Chung T-Y. Correlation between preoperative biometry and posterior Chamber Phakic Visian Implantable Collamer Lens Vaulting. Ophthalmology. 2012;119:272–7.

Article  PubMed  Google Scholar 

Kojima T, Yokoyama S, Ito M, Horai R, Hara S, Tomoaki N, et al. Optimization of an Implantable Collamer Lens sizing Method using high-frequency Ultrasound Biomicroscopy. Am J Ophthalmol Elsevier. 2012;153:632–637e1.

Article  Google Scholar 

Montés-Micó R, Tañá-Rivero P, Aguilar-Córcoles S, Ruiz-Santos M, Rodríguez-Carrillo MD, Ruiz-Mesa R. Angle-to-angle and spur-to-spur distance analysis with high-resolution optical coherence tomography. Eye and Vision. 2020;7:42.

Article  PubMed  PubMed Central  Google Scholar 

Cheng S-M, Zhang J-S, Li T-T, Wu Z-T, Wang P, Yu A-Y. Repeatability and agreement of two swept-source Optical Coherence Tomographers for Anterior Segment parameter measurements. J Glaucoma. 2022;31:602–8.

Article  PubMed  Google Scholar 

Schiano-Lomoriello D, Hoffer KJ, Abicca I, Savini G. Repeatability of automated measurements by a new anterior segment optical coherence tomographer and biometer and agreement with standard devices. Sci Rep Nature Publishing Group. 2021;11:983.

CAS  Google Scholar 

Nakamura T, Isogai N, Kojima T, Yoshida Y, Sugiyama Y. Optimization of implantable collamer lens sizing based on swept-source anterior segment optical coherence tomography. J Cataract Refractive Surg. 2020;46:742–8.

Article  Google Scholar 

Reinstein DZ, Archer TJ, Vida RS, Piparia V, Potter JG. New Sizing Parameters and Model for Predicting Postoperative Vault for the Implantable Collamer Lens posterior Chamber Phakic intraocular Lens. J Refractive Surg SLACK Incorporated. 2022;38:272–9.

Article  Google Scholar 

Ishikawa H. Anterior segment imaging for glaucoma: OCT or UBM? Br J Ophthalmol. 2007;91:1420–1.

Article  PubMed  PubMed Central  Google Scholar 

Kamiya K, Ryu IH, Yoo TK, Kim JS, Lee IS, Kim JK, et al. Prediction of phakic intraocular Lens Vault using machine learning of Anterior Segment Optical Coherence Tomography Metrics. Am J Ophthalmol. 2021;226:90–9.

Article  PubMed  Google Scholar 

Datta S, Le-Rademacher J, Datta S. Predicting patient survival from microarray data by accelerated failure time modeling using partial least squares and LASSO. Biometrics. 2007;63:259–71.

Article  CAS  PubMed  Google Scholar 

Oleszko A, Marek J, Muzyka-Wozniak M. Application of a partial least squares regression algorithm for posterior Chamber Phakic intraocular Lens Sizing and Postoperative Vault Prediction. J Refract Surg. 2020;36:606–12.

Article  PubMed  Google Scholar 

Tibshirani R. Regression shrinkage and selection via the lasso.Journal of the Royal Statistical Society Series B (Methodological). 1996;267–88.

Oh E, Yoo TK, Park E-C. Diabetic retinopathy risk prediction for fundus examination using sparse learning: a cross-sectional study. BMC Med Inform Decis Mak. 2013;13:106.

Article  PubMed  PubMed Central  Google Scholar 

Rohm M, Tresp V, Müller M, Kern C, Manakov I, Weiss M, et al. Predicting Visual Acuity by using machine learning in patients treated for Neovascular Age-Related Macular Degeneration. Ophthalmology. 2018;125:1028–36.

Article  PubMed  Google Scholar 

Shi P, Tsai C-L. Regression model selection—a residual likelihood approach. J Royal Stat Society: Ser B (Statistical Methodology). 2002;64:237–52.

Article  Google Scholar 

Pavlin CJ, Harasiewicz K, Sherar MD, Foster FS. Clinical use of Ultrasound Biomicroscopy. Ophthalmology. 1991;98:287–95.

Article  CAS  PubMed  Google Scholar 

Dougherty PJ, Rivera RP, Schneider D, Lane SS, Brown D, Vukich J. Improving accuracy of phakic intraocular lens sizing using high-frequency ultrasound biomicroscopy. J Cataract Refractive Surg. 2011;37:13–8.

Article  Google Scholar 

Wang X, Chen X, Tang Y, Wang J, Chen Y, Sun X. Morphologic Features of Crystalline Lens in Patients with Primary Angle Closure Disease Observed by CASIA 2 Optical Coherence Tomography. Investigative Ophthalmology & Visual Science. 2020;61:40.

Schröder S, Langenbucher A, Schrecker J. Comparison of corneal elevation and pachymetry measurements made by two state of the art corneal tomographers with different measurement principles. PLOS ONE Public Library of Science. 2019;14:e0223770.

Article  Google Scholar 

Nakamura T, Isogai N, Kojima T, Yoshida Y, Sugiyama Y. Implantable Collamer Lens sizing Method based on swept-source Anterior Segment Optical Coherence Tomography. Am J Ophthalmol. 2018;187:99–107.

Article  PubMed  Google Scholar 

Igarashi A, Shimizu K, Kato S, Kamiya K. Predictability of the vault after posterior chamber phakic intraocular lens implantation using anterior segment optical coherence tomography. J Cataract Refractive Surg. 2019;45:1099–104.

Article  Google Scholar 

Igarashi A, Shimizu K, Kato S. Assessment of the Vault after Implantable Collamer Lens Implantation using the KS Formula. J Refractive Surg SLACK Incorporated. 2021;37:636–41.

Article  Google Scholar 

Shen Y, Wang L, Jian W, Shang J, Wang X, Ju L et al. Big-data and artificial-intelligence-assisted vault prediction and EVO-ICL size selection for myopia correction.Br J Ophthalmol. 2021;bjophthalmol-2021-319618.

Rocamora L, Orlando JI, Lwowski C, Kohnen T, Mertens E, Van Keer K. Postoperative vault prediction for phakic implantable collamer lens surgery: LASSO formulas. J Cataract Refractive Surg. 2023;49:126.

Article  Google Scholar 

Pardeshi AA, Song AE, Lazkani N, Xie X, Huang A, Xu BY. Intradevice repeatability and interdevice agreement of ocular biometric measurements: a comparison of two swept-source anterior segment OCT Devices. Translational Vis Sci Technol. 2020;9:14.

Article  Google Scholar 

Tañá-Rivero P, Ruiz-Mesa R, Aguilar-Córcoles S, Tello-Elordi C, Ramos-Alzamora M, Montés-Micó R. Lens-vault analysis and its correlation with other biometric parameters using swept-source OCT. J Optom. 2022;15:88–99.

Article  PubMed  Google Scholar 

Murata H, Asaoka R, Fujino Y, Matsuura M, Hirasawa K, Shimada S et al. Comparing the usefulness of a new algorithm to measure visual field using the variational Bayes linear regression in glaucoma patients, in comparison to the Swedish interactive thresholding algorithm. British Journal of Ophthalmology. BMJ Publishing Group Ltd; 2022;106:660–6.

Shi J, He Q, Pan Y, Zhang X, Li M, Chen S. Estimation of Appendicular Skeletal Muscle Mass for Women Aged 60–70 Years Using a Machine Learning Approach.Journal of the American Medical Directors Association. 2022;23:1985.e1-1985.e7.

Chan SM, Svitova TF, Lin MC. Accounting for Ethnicity-Related Differences in Ocular Surface Integrity as a Step Toward Understanding Contact Lens Discomfort. Eye & Contact Lens: Science & Clinical Practice. 2017;43:23–31.

Hosny M, Ali ó JL, Claramonte P, Attia WH. P érez-SJJ. Relationship between Anterior Chamber depth, refractive state, corneal diameter, and axial length. J Refractive Surg SLACK Incorporated. 2000;16:336–40.

Article  CAS  Google Scholar 

Yoo TK, Ryu IH, Kim JK, Lee IS, Kim HK. A deep learning approach for detection of shallow anterior chamber depth based on the hidden features of fundus photographs. Comput Methods Programs Biomed. 2022;219:106735.

Article  PubMed  Google Scholar 

Serra P, Sánchez Trancón Á, Torrado Sierra O, Baptista A, Cerpa Manito S. Posterior Chamber Phakic intraocular lenses for the correction of myopia: factors influencing the postoperative refraction. Optics. Volume 2. Multidisciplinary Digital Publishing Institute; 2021. pp. 292–305.

留言 (0)

沒有登入
gif